Reader small image

You're reading from  Unity 5.x Game AI Programming Cookbook

Product typeBook
Published inMar 2016
PublisherPackt
ISBN-139781783553570
Edition1st Edition
Tools
Right arrow
Author (1)
Jorge Palacios
Jorge Palacios
author image
Jorge Palacios

Jorge Palacios is a software and game developer with a BS in computer science and eight years of professional experience. He's been developing games for the last five years in different roles, from tool developer to lead programmer. Mainly focused on artificial intelligence and gameplay programming, he is currently working with Unity and HTML5. He's also a game-programming instructor, speaker, and game-jam organizer.
Read more about Jorge Palacios

Right arrow

Wandering around


This technique works like a charm for random crowd simulations, animals, and almost any kind of NPC that requires random movement when idle.

Getting ready

We need to add another function to our AgentBehaviour class called OriToVec that converts an orientation value to a vector.

public Vector3 GetOriAsVec (float orientation) {
    Vector3 vector  = Vector3.zero;
    vector.x = Mathf.Sin(orientation * Mathf.Deg2Rad) * 1.0f;
    vector.z = Mathf.Cos(orientation * Mathf.Deg2Rad) * 1.0f;
    return vector.normalized;
}

How to do it...

We could see it as a big three-step process in which we manipulate the internal target position in a parameterized random way, face that position, and move accordingly:

  1. Create the Wander class deriving from Face:

    using UnityEngine;
    using System.Collections;
    
    public class Wander : Face
    {
        public float offset;
        public float radius;
        public float rate;
    }
  2. Define the Awake function in order to set up the internal target:

    public override void Awake()
    {
        target = new GameObject();
        target.transform.position = transform.position;
        base.Awake();
    }
  3. Define the GetSteering function:

    public override Steering GetSteering()
    {
        Steering steering = new Steering();
        float wanderOrientation = Random.Range(-1.0f, 1.0f) * rate;
        float targetOrientation = wanderOrientation + agent.orientation;
        Vector3 orientationVec = OriToVec(agent.orientation);
        Vector3 targetPosition = (offset * orientationVec) + transform.position;
        targetPosition = targetPosition + (OriToVec(targetOrientation) * radius);
        targetAux.transform.position = targetPosition;
        steering = base.GetSteering();
        steering.linear = targetAux.transform.position - transform.position;
        steering.linear.Normalize();
        steering.linear *= agent.maxAccel;
        return steering;
    }

How it works...

The behavior takes into consideration two radii in order to get a random position to go to next, looks towards that random point, and converts the computed orientation into a direction vector in order to advance.

A visual description of the parameters for creating the Wander behavior

Previous PageNext Page
You have been reading a chapter from
Unity 5.x Game AI Programming Cookbook
Published in: Mar 2016Publisher: PacktISBN-13: 9781783553570
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime

Author (1)

author image
Jorge Palacios

Jorge Palacios is a software and game developer with a BS in computer science and eight years of professional experience. He's been developing games for the last five years in different roles, from tool developer to lead programmer. Mainly focused on artificial intelligence and gameplay programming, he is currently working with Unity and HTML5. He's also a game-programming instructor, speaker, and game-jam organizer.
Read more about Jorge Palacios