Reader small image

You're reading from  Deep Learning with Theano

Product typeBook
Published inJul 2017
PublisherPackt
ISBN-139781786465825
Edition1st Edition
Tools
Right arrow
Author (1)
Christopher Bourez
Christopher Bourez
author image
Christopher Bourez

Christopher Bourez graduated from Ecole Polytechnique and Ecole Normale Suprieure de Cachan in Paris in 2005 with a Master of Science in Math, Machine Learning and Computer Vision (MVA). For 7 years, he led a company in computer vision that launched Pixee, a visual recognition application for iPhone in 2007, with the major movie theater brand, the city of Paris and the major ticket broker: with a snap of a picture, the user could get information about events, products, and access to purchase. While working on missions in computer vision with Caffe, TensorFlow or Torch, he helped other developers succeed by writing on a blog on computer science. One of his blog posts, a tutorial on the Caffe deep learning technology, has become the most successful tutorial on the web after the official Caffe website. On the initiative of Packt Publishing, the same recipes that made the success of his Caffe tutorial have been ported to write this book on Theano technology. In the meantime, a wide range of problems for Deep Learning are studied to gain more practice with Theano and its application.
Read more about Christopher Bourez

Right arrow

Simple recurrent network


An RNN is a network applied at multiple time steps but with a major difference: a connection to the previous state of layers at previous time steps named hidden states :

This can be written in the following form:

An RNN can be unrolled as a feedforward network applied on the sequence as input and with shared parameters between different time steps.

Input and output's first dimension is time, while next dimensions are for the data dimension inside each step. As seen in the previous chapter, the value at a time step (a word or a character) can be represented either by an index (an integer, 0-dimensional) or a one-hot-encoding vector (1-dimensional). The former representation is more compact in memory. In this case, input and output sequences will be 1-dimensional represented by a vector, with one dimension, the time:

x = T.ivector()
y = T.ivector()

The structure of the training program remains the same as in Chapter 2, Classifying Handwritten Digits with a Feedforward...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Deep Learning with Theano
Published in: Jul 2017Publisher: PacktISBN-13: 9781786465825

Author (1)

author image
Christopher Bourez

Christopher Bourez graduated from Ecole Polytechnique and Ecole Normale Suprieure de Cachan in Paris in 2005 with a Master of Science in Math, Machine Learning and Computer Vision (MVA). For 7 years, he led a company in computer vision that launched Pixee, a visual recognition application for iPhone in 2007, with the major movie theater brand, the city of Paris and the major ticket broker: with a snap of a picture, the user could get information about events, products, and access to purchase. While working on missions in computer vision with Caffe, TensorFlow or Torch, he helped other developers succeed by writing on a blog on computer science. One of his blog posts, a tutorial on the Caffe deep learning technology, has become the most successful tutorial on the web after the official Caffe website. On the initiative of Packt Publishing, the same recipes that made the success of his Caffe tutorial have been ported to write this book on Theano technology. In the meantime, a wide range of problems for Deep Learning are studied to gain more practice with Theano and its application.
Read more about Christopher Bourez