Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Deep Learning with Theano

You're reading from  Deep Learning with Theano

Product type Book
Published in Jul 2017
Publisher Packt
ISBN-13 9781786465825
Pages 300 pages
Edition 1st Edition
Languages
Author (1):
Christopher Bourez Christopher Bourez
Profile icon Christopher Bourez

Table of Contents (22) Chapters

Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Theano Basics Classifying Handwritten Digits with a Feedforward Network Encoding Word into Vector Generating Text with a Recurrent Neural Net Analyzing Sentiment with a Bidirectional LSTM Locating with Spatial Transformer Networks Classifying Images with Residual Networks Translating and Explaining with Encoding – decoding Networks Selecting Relevant Inputs or Memories with the Mechanism of Attention Predicting Times Sequences with Advanced RNN Learning from the Environment with Reinforcement Learning Features with Unsupervised Generative Networks Extending Deep Learning with Theano Index

A localization network


In Spatial Transformer Networks (STN), instead of applying the network directly to the input image signal, the idea is to add a module to preprocess the image and crop it, rotate it, and scale it to fit the object, to assist in classification:

Spatial Transformer Networks

For that purpose, STNs use a localization network to predict the affine transformation parameters and process the input:

Spatial transformer networks

In Theano, differentiation through the affine transformation is automatic, we simply have to connect the localization net with the input of the classification net through the affine transformation.

First, we create a localization network not very far from the MNIST CNN model, to predict six parameters of the affine transformation:

l_in = lasagne.layers.InputLayer((None, dim, dim))
l_dim = lasagne.layers.DimshuffleLayer(l_in, (0, 'x', 1, 2))
l_pool0_loc = lasagne.layers.MaxPool2DLayer(l_dim, pool_size=(2, 2))
l_dense_loc = mnist_cnn.model(l_pool0_loc, input_dim...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}