Reader small image

You're reading from  Applied Deep Learning and Computer Vision for Self-Driving Cars

Product typeBook
Published inAug 2020
Reading LevelIntermediate
PublisherPackt
ISBN-139781838646301
Edition1st Edition
Languages
Right arrow
Authors (2):
Sumit Ranjan
Sumit Ranjan
author image
Sumit Ranjan

Sumit Ranjan is a silver medalist in his Bachelor of Technology (Electronics and Telecommunication) degree. He is a passionate data scientist who has worked on solving business problems to build an unparalleled customer experience across domains such as, automobile, healthcare, semi-conductor, cloud-virtualization, and insurance. He is experienced in building applied machine learning, computer vision, and deep learning solutions, to meet real-world needs. He was awarded Autonomous Self-Driving Car Scholar by KPIT Technologies. He has also worked on multiple research projects at Mercedes Benz Research and Development. Apart from work, his hobbies are traveling and exploring new places, wildlife photography, and blogging.
Read more about Sumit Ranjan

Dr. S. Senthamilarasu
Dr. S. Senthamilarasu
author image
Dr. S. Senthamilarasu

Dr. S. Senthamilarasu was born and raised in the Coimbatore, Tamil Nadu. He is a technologist, designer, speaker, storyteller, journal reviewer educator, and researcher. He loves to learn new technologies and solves real world problems in the IT industry. He has published various journals and research papers and has presented at various international conferences. His research areas include data mining, image processing, and neural network. He loves reading Tamil novels and involves himself in social activities. He has also received silver medals in international exhibitions for his research products for children with an autism disorder. He currently lives in Bangalore and is working closely with lead clients.
Read more about Dr. S. Senthamilarasu

View More author details
Right arrow

Building safe systems

The first one is building a safe system. In order to replace human drivers, the SDC needs to be safer than a human driver. So, how do we quantify that? It is impossible to guarantee that accidents will not occur without real-world testing, which comes with that innate risk.

We can start by quantifying how good human drivers are. In the US, the current fatality rate is about one death per one million hours of driving. This includes human error and irresponsible driving, so we can probably hold the vehicles to a higher standard, but that's the benchmark nonetheless. Therefore, the SDC vehicle needs to have fewer fatalities than once every one million hours, and currently, that is not the case. We do not have enough data to calculate accurate statistics here, but we do know that Uber's SDC required a human to intervene approximately every 19 kilometers (KM). The first case of pedestrian fatality was reported in 2018 after a pedestrian was hit by Uber's autonomous test vehicle.

The car was in self-driving mode, sitting in the driving seat with a human backup driver. Uber halted testing of SDCs in Arizona, where such testing had been approved since August 2016. Uber opted not to extend its California self-driving trial permit when it expired at the end of March 2018. Uber's vehicle that hit the pedestrian was using LIDAR sensors that didn't work using light coming from camera sensors. However, Uber's test vehicle made no effort to slow down, even though the vehicle was occupied by the human backup driver, who wasn't careful and was not paying attention.

According to the data obtained by Uber, the vehicle first observed the pedestrian 6 seconds before the impact with its RADAR and LIDAR sensors. At the time of the hazard, the vehicle was traveling at 70 kilometers per hour. The vehicle continued at the same speed and when the paths of the pedestrian and the car converged, the classification algorithm of the machine was seen trying to classify what object was in its view. The system switched its identification from an unidentified object, to a car, to a cyclist with no identification of the driving path of the pedestrian. Just 1.3 seconds before the crash, the vehicle was able to recognize the pedestrian. The vehicle was required to perform an emergency brake but didn't as it was programmed not to brake.

As per the algorithm's prediction, the vehicle performed a speed deceleration of more than 6.5 meters per square second. Also, the human operator was expected to intervene, but the vehicle was not designed to alert the driver. The driver did intervene a few seconds before the impact by engaging the steering wheel and braking and bringing the vehicle's speed to 62 kilometers per hour, but it was too late to save the pedestrian. Nothing malfunctioned in the car and everything worked as planned, but it was clearly a case of bad programming. In this case, the internal computer was clearly not programmed to deal with this uncertainty, whereas a human would normally slow down when confronted with an unknown hazard. Even with high-resolution LIDAR, the vehicle failed to recognize the pedestrian.

Previous PageNext Page
You have been reading a chapter from
Applied Deep Learning and Computer Vision for Self-Driving Cars
Published in: Aug 2020Publisher: PacktISBN-13: 9781838646301
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime

Authors (2)

author image
Sumit Ranjan

Sumit Ranjan is a silver medalist in his Bachelor of Technology (Electronics and Telecommunication) degree. He is a passionate data scientist who has worked on solving business problems to build an unparalleled customer experience across domains such as, automobile, healthcare, semi-conductor, cloud-virtualization, and insurance. He is experienced in building applied machine learning, computer vision, and deep learning solutions, to meet real-world needs. He was awarded Autonomous Self-Driving Car Scholar by KPIT Technologies. He has also worked on multiple research projects at Mercedes Benz Research and Development. Apart from work, his hobbies are traveling and exploring new places, wildlife photography, and blogging.
Read more about Sumit Ranjan

author image
Dr. S. Senthamilarasu

Dr. S. Senthamilarasu was born and raised in the Coimbatore, Tamil Nadu. He is a technologist, designer, speaker, storyteller, journal reviewer educator, and researcher. He loves to learn new technologies and solves real world problems in the IT industry. He has published various journals and research papers and has presented at various international conferences. His research areas include data mining, image processing, and neural network. He loves reading Tamil novels and involves himself in social activities. He has also received silver medals in international exhibitions for his research products for children with an autism disorder. He currently lives in Bangalore and is working closely with lead clients.
Read more about Dr. S. Senthamilarasu