Reader small image

You're reading from  Learning Bayesian Models with R

Product typeBook
Published inOct 2015
Reading LevelBeginner
PublisherPackt
ISBN-139781783987603
Edition1st Edition
Languages
Right arrow
Author (1)
Hari Manassery Koduvely
Hari Manassery Koduvely
author image
Hari Manassery Koduvely

Dr. Hari M. Koduvely is an experienced data scientist working at the Samsung R&D Institute in Bangalore, India. He has a PhD in statistical physics from the Tata Institute of Fundamental Research, Mumbai, India, and post-doctoral experience from the Weizmann Institute, Israel, and Georgia Tech, USA. Prior to joining Samsung, the author has worked for Amazon and Infosys Technologies, developing machine learning-based applications for their products and platforms. He also has several publications on Bayesian inference and its applications in areas such as recommendation systems and predictive health monitoring. His current interest is in developing large-scale machine learning methods, particularly for natural language understanding.
Read more about Hari Manassery Koduvely

Right arrow

Exercises


For the following exercises in this chapter, we use the Auto MPG dataset from the UCI Machine Learning repository (references 5 and 6 in the References section of this chapter). The dataset can be downloaded from https://archive.ics.uci.edu/ml/datasets.html. The dataset contains the fuel consumption of cars in the US measured during 1970-1982. Along with consumption values, there are attribute variables, such as the number of cylinders, displacement, horse power, weight, acceleration, year, origin, and the name of the car:

  • Load the dataset into R using the read.table() function.

  • Produce a box plot of mpg values for each car name.

  • Write a function that will compute the scaled value (subtract the mean and divide by standard deviation) of a column whose name is given as an argument of the function.

  • Use the lapply() function to compute scaled values for all variables.

  • Produce a scatter plot of mgp versus acceleration for each car name using coplot(). Use legends to annotate the graph.

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Learning Bayesian Models with R
Published in: Oct 2015Publisher: PacktISBN-13: 9781783987603

Author (1)

author image
Hari Manassery Koduvely

Dr. Hari M. Koduvely is an experienced data scientist working at the Samsung R&D Institute in Bangalore, India. He has a PhD in statistical physics from the Tata Institute of Fundamental Research, Mumbai, India, and post-doctoral experience from the Weizmann Institute, Israel, and Georgia Tech, USA. Prior to joining Samsung, the author has worked for Amazon and Infosys Technologies, developing machine learning-based applications for their products and platforms. He also has several publications on Bayesian inference and its applications in areas such as recommendation systems and predictive health monitoring. His current interest is in developing large-scale machine learning methods, particularly for natural language understanding.
Read more about Hari Manassery Koduvely