Reader small image

You're reading from  Learning Bayesian Models with R

Product typeBook
Published inOct 2015
Reading LevelBeginner
PublisherPackt
ISBN-139781783987603
Edition1st Edition
Languages
Right arrow
Author (1)
Hari Manassery Koduvely
Hari Manassery Koduvely
author image
Hari Manassery Koduvely

Dr. Hari M. Koduvely is an experienced data scientist working at the Samsung R&D Institute in Bangalore, India. He has a PhD in statistical physics from the Tata Institute of Fundamental Research, Mumbai, India, and post-doctoral experience from the Weizmann Institute, Israel, and Georgia Tech, USA. Prior to joining Samsung, the author has worked for Amazon and Infosys Technologies, developing machine learning-based applications for their products and platforms. He also has several publications on Bayesian inference and its applications in areas such as recommendation systems and predictive health monitoring. His current interest is in developing large-scale machine learning methods, particularly for natural language understanding.
Read more about Hari Manassery Koduvely

Right arrow

Marginal distribution


In many situations, we are interested only in the probability distribution of a subset of random variables. For example, in the heart disease problem mentioned in the previous section, if we want to infer the probability of people in a population having a heart disease as a function of their age only, we need to integrate out the effect of other random variables such as blood pressure and diabetes. This is called marginalization:

Or:

Note that marginal distribution is very different from conditional distribution. In conditional probability, we are finding the probability of a subset of random variables with values of other random variables fixed (conditioned) at a given value. In the case of marginal distribution, we are eliminating the effect of a subset of random variables by integrating them out (in the sense averaging their effect) from the joint distribution. For example, in the case of two-dimensional normal distribution, marginalization with respect to one variable will result in a one-dimensional normal distribution of the other variable, as follows:

The details of this integration is given as an exercise (exercise 3 in the Exercises section of this chapter).

Previous PageNext Page
You have been reading a chapter from
Learning Bayesian Models with R
Published in: Oct 2015Publisher: PacktISBN-13: 9781783987603
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime

Author (1)

author image
Hari Manassery Koduvely

Dr. Hari M. Koduvely is an experienced data scientist working at the Samsung R&D Institute in Bangalore, India. He has a PhD in statistical physics from the Tata Institute of Fundamental Research, Mumbai, India, and post-doctoral experience from the Weizmann Institute, Israel, and Georgia Tech, USA. Prior to joining Samsung, the author has worked for Amazon and Infosys Technologies, developing machine learning-based applications for their products and platforms. He also has several publications on Bayesian inference and its applications in areas such as recommendation systems and predictive health monitoring. His current interest is in developing large-scale machine learning methods, particularly for natural language understanding.
Read more about Hari Manassery Koduvely