Reader small image

You're reading from  Modern Computer Vision with PyTorch

Product typeBook
Published inNov 2020
Reading LevelBeginner
PublisherPackt
ISBN-139781839213472
Edition1st Edition
Languages
Tools
Right arrow
Authors (2):
V Kishore Ayyadevara
V Kishore Ayyadevara
author image
V Kishore Ayyadevara

V Kishore Ayyadevara leads a team focused on using AI to solve problems in the healthcare space. He has 10 years' experience in data science, solving problems to improve customer experience in leading technology companies. In his current role, he is responsible for developing a variety of cutting edge analytical solutions that have an impact at scale while building strong technical teams. Prior to this, Kishore authored three books — Pro Machine Learning Algorithms, Hands-on Machine Learning with Google Cloud Platform, and SciPy Recipes. Kishore is an active learner with keen interest in identifying problems that can be solved using data, simplifying the complexity and in transferring techniques across domains to achieve quantifiable results.
Read more about V Kishore Ayyadevara

Yeshwanth Reddy
Yeshwanth Reddy
author image
Yeshwanth Reddy

Yeshwanth is a highly accomplished data scientist manager with 9+ years of experience in deep learning and document analysis. He has made significant contributions to the field, including building software for end-to-end document digitization, resulting in substantial cost savings. Yeshwanth's expertise extends to developing modules in OCR, word detection, and synthetic document generation. His groundbreaking work has been recognized through multiple patents. He also created a few Python libraries. With a passion for disrupting unsupervised and self-supervised learning, Yeshwanth is dedicated to reducing reliance on manual annotation and driving innovative solutions in the field of data science.
Read more about Yeshwanth Reddy

View More author details
Right arrow

Understanding variational autoencoders

So far, we have seen a scenario where we can group similar images into clusters. Furthermore, we have learned that when we take embeddings of images that fall in a given cluster, we can re-construct (decode) them. However, what if an embedding (a latent vector) falls in between two clusters? There is no guarantee that we would generate realistic images. Variational autoencoders come in handy in such a scenario.

Before we dive into building a variational autoencoder, let's explore the limitations of generating images from embeddings that do not fall into a cluster (or in the middle of different clusters). First, we generate images by sampling vectors:

The following code is a continuation of the code built in the previous section, Understanding convolutional autoencoders, and is available as conv_auto_encoder.ipynb in the chapter11 folder of this book's GitHub repository - https://tinyurl.com/mcvp-packt
  1. Calculate the latent vectors (embeddings...
lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Modern Computer Vision with PyTorch
Published in: Nov 2020Publisher: PacktISBN-13: 9781839213472

Authors (2)

author image
V Kishore Ayyadevara

V Kishore Ayyadevara leads a team focused on using AI to solve problems in the healthcare space. He has 10 years' experience in data science, solving problems to improve customer experience in leading technology companies. In his current role, he is responsible for developing a variety of cutting edge analytical solutions that have an impact at scale while building strong technical teams. Prior to this, Kishore authored three books — Pro Machine Learning Algorithms, Hands-on Machine Learning with Google Cloud Platform, and SciPy Recipes. Kishore is an active learner with keen interest in identifying problems that can be solved using data, simplifying the complexity and in transferring techniques across domains to achieve quantifiable results.
Read more about V Kishore Ayyadevara

author image
Yeshwanth Reddy

Yeshwanth is a highly accomplished data scientist manager with 9+ years of experience in deep learning and document analysis. He has made significant contributions to the field, including building software for end-to-end document digitization, resulting in substantial cost savings. Yeshwanth's expertise extends to developing modules in OCR, word detection, and synthetic document generation. His groundbreaking work has been recognized through multiple patents. He also created a few Python libraries. With a passion for disrupting unsupervised and self-supervised learning, Yeshwanth is dedicated to reducing reliance on manual annotation and driving innovative solutions in the field of data science.
Read more about Yeshwanth Reddy