Reader small image

You're reading from  Building a Home Security System with Raspberry Pi

Product typeBook
Published inDec 2015
Publisher
ISBN-139781782175278
Edition1st Edition
Right arrow
Author (1)
Matthew Poole
Matthew Poole
author image
Matthew Poole

Matthew Poole is a systems engineer based near Southampton on the south coast of England, with over 20 years of industry experience. After graduating in electronics and communications engineering, he went on to train as and become an air traffic engineer for Civil Aviation Authority, UK, working on microprocessor-based control and communications systems. Later, he became a software architect and mobile technology specialist, working for several consultancies and global organizations in both hands-on architecture and product-management roles . He is now a partner at Connecting Objects, a boutique systems consultancy focusing on the design of Bluetooth and other wireless-based IoT systems, taking ideas from concept to prototype. He is also the Director of Technology for Mobile Onboard, a leading UK-based transport technology company specializing in bus connectivity and mobile ticketing systems. He is also the author of Building a Home Security System with Raspberry Pi, Packt Publishing. You can find his blog at http://cubiksoundz.com and LinkedIn profile at https://www.linkedin.com/in/cubik, or you can reach him on Twitter at @cubiksoundz.
Read more about Matthew Poole

Right arrow

Anti-tamper circuits


If you take a closer look at our system, you might realize that depending on whether you are detecting normally open or normally closed sensor switches, it is possible to tamper with the sensor channel by simply cutting the wire. So, in the case of a normally open switch, it wouldn't activate the monitoring system if the wires were cut, as it would always appear to be open, even if the switch was closed.

To mitigate this, most alarm systems feature a 4-core wiring system to connect the sensor devices to the main control board—two cores are used to connect the sensor and two are used to create an anti-tamper loop, which then itself forms a sensor input for monitoring.

4-core alarm cable

Take a look at the following circuit so that you see what I mean:

In this circuit, we have two sensors: one for monitoring a window and one for monitoring a door. These are connected to the I/O BUS A inputs, 0 and 1 (or GPA0 and GPA1, as we like to call them). As before, they are pulled down...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Building a Home Security System with Raspberry Pi
Published in: Dec 2015Publisher: ISBN-13: 9781782175278

Author (1)

author image
Matthew Poole

Matthew Poole is a systems engineer based near Southampton on the south coast of England, with over 20 years of industry experience. After graduating in electronics and communications engineering, he went on to train as and become an air traffic engineer for Civil Aviation Authority, UK, working on microprocessor-based control and communications systems. Later, he became a software architect and mobile technology specialist, working for several consultancies and global organizations in both hands-on architecture and product-management roles . He is now a partner at Connecting Objects, a boutique systems consultancy focusing on the design of Bluetooth and other wireless-based IoT systems, taking ideas from concept to prototype. He is also the Director of Technology for Mobile Onboard, a leading UK-based transport technology company specializing in bus connectivity and mobile ticketing systems. He is also the author of Building a Home Security System with Raspberry Pi, Packt Publishing. You can find his blog at http://cubiksoundz.com and LinkedIn profile at https://www.linkedin.com/in/cubik, or you can reach him on Twitter at @cubiksoundz.
Read more about Matthew Poole