Reader small image

You're reading from  Building a Home Security System with Raspberry Pi

Product typeBook
Published inDec 2015
Publisher
ISBN-139781782175278
Edition1st Edition
Right arrow
Author (1)
Matthew Poole
Matthew Poole
author image
Matthew Poole

Matthew Poole is a systems engineer based near Southampton on the south coast of England, with over 20 years of industry experience. After graduating in electronics and communications engineering, he went on to train as and become an air traffic engineer for Civil Aviation Authority, UK, working on microprocessor-based control and communications systems. Later, he became a software architect and mobile technology specialist, working for several consultancies and global organizations in both hands-on architecture and product-management roles . He is now a partner at Connecting Objects, a boutique systems consultancy focusing on the design of Bluetooth and other wireless-based IoT systems, taking ideas from concept to prototype. He is also the Director of Technology for Mobile Onboard, a leading UK-based transport technology company specializing in bus connectivity and mobile ticketing systems. He is also the author of Building a Home Security System with Raspberry Pi, Packt Publishing. You can find his blog at http://cubiksoundz.com and LinkedIn profile at https://www.linkedin.com/in/cubik, or you can reach him on Twitter at @cubiksoundz.
Read more about Matthew Poole

Right arrow

Give me power


You'll remember from the previous chapter that most things to do with the GPIO operate on a +3.3V level, rather than the +5V level that is often associated with digital circuits. This is the same with our I2C-based shift registers—they need to operate on +3.3V levels as well, in order to work with the Raspberry Pi.

You'll also recall, however, that there's not much +3.3V juice available directly from the Raspberry Pi—in fact, just 50mA. This is really not enough for our interface. So, before we go any further, we're going to build our own +3.3V power supply, which is sufficient for our system.

For our power supply, we're going to use a basic 3.3V voltage regulator (type LD1117V33) that will take our slightly more plentiful +5V supply from the Raspberry Pi and regulate it to a nice smooth +3.3V supply. We should be able to draw a few hundred milliamps from this supply—enough for the I/O circuitry on our security system.

The parts required for our power supply are as follows:

  • A LD1117V33...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Building a Home Security System with Raspberry Pi
Published in: Dec 2015Publisher: ISBN-13: 9781782175278

Author (1)

author image
Matthew Poole

Matthew Poole is a systems engineer based near Southampton on the south coast of England, with over 20 years of industry experience. After graduating in electronics and communications engineering, he went on to train as and become an air traffic engineer for Civil Aviation Authority, UK, working on microprocessor-based control and communications systems. Later, he became a software architect and mobile technology specialist, working for several consultancies and global organizations in both hands-on architecture and product-management roles . He is now a partner at Connecting Objects, a boutique systems consultancy focusing on the design of Bluetooth and other wireless-based IoT systems, taking ideas from concept to prototype. He is also the Director of Technology for Mobile Onboard, a leading UK-based transport technology company specializing in bus connectivity and mobile ticketing systems. He is also the author of Building a Home Security System with Raspberry Pi, Packt Publishing. You can find his blog at http://cubiksoundz.com and LinkedIn profile at https://www.linkedin.com/in/cubik, or you can reach him on Twitter at @cubiksoundz.
Read more about Matthew Poole