Reader small image

You're reading from  Arduino Development Cookbook

Product typeBook
Published inApr 2015
Publisher
ISBN-139781783982943
Edition1st Edition
Tools
Concepts
Right arrow
Author (1)
Cornel M Amariei
Cornel M Amariei
author image
Cornel M Amariei

Cornel Amariei is a Romanian inventor and entrepreneur in the fields of Robotics and 3D printing. He has been working with the Arduino platform since its early days in 2007. His past experience involves large cargo gamma ray scanning robotics, ATM security systems, and blind assisting devices. In his spare time, he is a performing musician playing multiple instruments—predominately the guitar. He is also a swimmer, water polo player, and photographer. Over the years, he has built hundreds of Arduino projects, ranging from flying Quadcopters to levitating magnets and underwater robots. Currently, he splits his time between doing his undergraduate studies in electric engineering and computer science at Jacobs University in Bremen, Germany, and his start-ups and research and development job.
Read more about Cornel M Amariei

Right arrow

Ohm's law


Electronics is all related to Ohm's law. This provides the relation between voltage, current, and resistance in a circuit. The law states that the current passing through a resistor is directly proportional to the applied voltage across it. In mathematical forms, it looks like this:

A simple way to remember and apply it according to either of the variables is the following triangle:

If we want to find the current, we cover I and we get V divided by R. The same goes for R: we cover it and we obtain V divided by I. Lastly, V will equal I multiplied with R. Let's now apply this knowledge to the following circuit:

Here, we have one 5-volt voltage source in series with one resistor R1 with a resistance of 100 Ω. Because we have only one resistor, the total voltage across it will be equal to the voltage of the source, 5 V. We can now apply Ohm's law to find the current in the circuit:

Remember that 1 ampere equals 1,000 milliamperes, represented by the unit mA.

Resistor configurations

If we have more than one resistor in series, we can use the rule of series resistance. It states that any number of resistors in series can be replaced by only one, with the resistance equal to the sum of all replaced resistances. Mathematically, it is depicted as seen here:

The following diagram shows the two resistors on the left in series R1 and R2. On the right, it shows the same circuit, but now with an equivalent resistor R3, which equals R1 + R2.

There is also the parallel resistor configuration. When we mount two or more resistors in parallel, the current is split among them. This results in a lower overall resistance. For two resistors, the formula looks like this:

The following diagram proves just that. On the left we have the normal circuit with two resistors in parallel, and on the right we have the equivalent resistor value:

We can buy resistors with a variety of internal resistances. To easily determine what resistance a resistor has, a color code has been created. We can find the color stripes on every resistor. This is a helper diagram, which shows how to read the resistor color code:

You can find an online equivalent resistance calculator at http://calculator.tutorvista.com/equivalent-resistance-calculator.html.

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Arduino Development Cookbook
Published in: Apr 2015Publisher: ISBN-13: 9781783982943

Author (1)

author image
Cornel M Amariei

Cornel Amariei is a Romanian inventor and entrepreneur in the fields of Robotics and 3D printing. He has been working with the Arduino platform since its early days in 2007. His past experience involves large cargo gamma ray scanning robotics, ATM security systems, and blind assisting devices. In his spare time, he is a performing musician playing multiple instruments—predominately the guitar. He is also a swimmer, water polo player, and photographer. Over the years, he has built hundreds of Arduino projects, ranging from flying Quadcopters to levitating magnets and underwater robots. Currently, he splits his time between doing his undergraduate studies in electric engineering and computer science at Jacobs University in Bremen, Germany, and his start-ups and research and development job.
Read more about Cornel M Amariei