Reader small image

You're reading from  The Deep Learning with Keras Workshop

Product typeBook
Published inJul 2020
Reading LevelIntermediate
PublisherPackt
ISBN-139781800562967
Edition1st Edition
Languages
Tools
Right arrow
Authors (3):
Matthew Moocarme
Matthew Moocarme
author image
Matthew Moocarme

Matthew Moocarme is an accomplished data scientist with more than eight years of experience in creating and utilizing machine learning models. He comes from a background in the physical sciences, in which he holds a Ph.D. in physics from the Graduate Center of CUNY. Currently, he leads a team of data scientists and engineers in the media and advertising space to build and integrate machine learning models for a variety of applications. In his spare time, Matthew enjoys sharing his knowledge with the data science community through published works, conference presentations, and workshops.
Read more about Matthew Moocarme

Mahla Abdolahnejad
Mahla Abdolahnejad
author image
Mahla Abdolahnejad

Mahla Abdolahnejad is a Ph.D. candidate in systems and computer engineering with Carleton University, Canada. She also holds a bachelor's degree and a master's degree in biomedical engineering, which first exposed her to the field of artificial intelligence and artificial neural networks, in particular. Her Ph.D. research is focused on deep unsupervised learning for computer vision applications. She is particularly interested in exploring the differences between a human's way of learning from the visual world and a machine's way of learning from the visual world, and how to push machine learning algorithms toward learning and thinking like humans.
Read more about Mahla Abdolahnejad

Ritesh Bhagwat
Ritesh Bhagwat
author image
Ritesh Bhagwat

Ritesh Bhagwat has a master's degree in applied mathematics with a specialization in computer science. He has over 14 years of experience in data-driven technologies and has led and been a part of complex projects ranging from data warehousing and business intelligence to machine learning and artificial intelligence. He has worked with top-tier global consulting firms as well as large multinational financial institutions. Currently, he works as a data scientist. Besides work, he enjoys playing and watching cricket and loves to travel. He is also deeply interested in Bayesian statistics.
Read more about Ritesh Bhagwat

View More author details
Right arrow

Summary

In this chapter, we covered the various types of linear algebra components and operations that pertain to machine learning. These components include scalars, vectors, matrices, and tensors. The operations that were applied to these tensors included addition, transposition, and multiplication—all of which are fundamental for understanding the underlying mathematics of ANNs.

We also learned some of the basics of the Keras package, including the mathematics that occurs at each node. We replicated the model from the previous chapter, in which we built a logistic regression model to predict the same target from the online shopping purchasing intention dataset. However, in this chapter, we used the Keras library to create the model using an ANN instead of the scikit-learn logistic regression model. We achieved a similar level of accuracy using ANNs.

The upcoming chapters of this book will use the same concepts we learned about in this chapter; however, we will continue...

Previous PageNext Chapter
You have been reading a chapter from
The Deep Learning with Keras Workshop
Published in: Jul 2020Publisher: PacktISBN-13: 9781800562967
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime

Authors (3)

author image
Matthew Moocarme

Matthew Moocarme is an accomplished data scientist with more than eight years of experience in creating and utilizing machine learning models. He comes from a background in the physical sciences, in which he holds a Ph.D. in physics from the Graduate Center of CUNY. Currently, he leads a team of data scientists and engineers in the media and advertising space to build and integrate machine learning models for a variety of applications. In his spare time, Matthew enjoys sharing his knowledge with the data science community through published works, conference presentations, and workshops.
Read more about Matthew Moocarme

author image
Mahla Abdolahnejad

Mahla Abdolahnejad is a Ph.D. candidate in systems and computer engineering with Carleton University, Canada. She also holds a bachelor's degree and a master's degree in biomedical engineering, which first exposed her to the field of artificial intelligence and artificial neural networks, in particular. Her Ph.D. research is focused on deep unsupervised learning for computer vision applications. She is particularly interested in exploring the differences between a human's way of learning from the visual world and a machine's way of learning from the visual world, and how to push machine learning algorithms toward learning and thinking like humans.
Read more about Mahla Abdolahnejad

author image
Ritesh Bhagwat

Ritesh Bhagwat has a master's degree in applied mathematics with a specialization in computer science. He has over 14 years of experience in data-driven technologies and has led and been a part of complex projects ranging from data warehousing and business intelligence to machine learning and artificial intelligence. He has worked with top-tier global consulting firms as well as large multinational financial institutions. Currently, he works as a data scientist. Besides work, he enjoys playing and watching cricket and loves to travel. He is also deeply interested in Bayesian statistics.
Read more about Ritesh Bhagwat