Reader small image

You're reading from  Bayesian Analysis with Python - Third Edition

Product typeBook
Published inJan 2024
Reading LevelExpert
PublisherPackt
ISBN-139781805127161
Edition3rd Edition
Languages
Right arrow
Author (1)
Osvaldo Martin
Osvaldo Martin
author image
Osvaldo Martin

Osvaldo Martin is a researcher at CONICET, in Argentina. He has experience using Markov Chain Monte Carlo methods to simulate molecules and perform Bayesian inference. He loves to use Python to solve data analysis problems. He is especially motivated by the development and implementation of software tools for Bayesian statistics and probabilistic modeling. He is an open-source developer, and he contributes to Python libraries like PyMC, ArviZ and Bambi among others. He is interested in all aspects of the Bayesian workflow, including numerical methods for inference, diagnosis of sampling, evaluation and criticism of models, comparison of models and presentation of results.
Read more about Osvaldo Martin

Right arrow

8.7 Gaussian process classification

In Chapter 4, we saw how a linear model can be used to classify data. We used a Bernoulli likelihood with a logistic inverse link function. Then, we applied a boundary decision rule. In this section, we are going to do the same, but this time using a GP instead of a linear model. As we did with model_lrs from Chapter 4, we are going to use the iris dataset with two classes, setosa and versicolor, and one predictor variable, the sepal length.

For this model, we cannot use the pm.gp.Marginal class, because that class is restricted to Gaussian likelihoods as it takes advantage of the mathematical tractability of the combination of a GP prior with a Gaussian likelihood. Instead, we need to use the more general class pm.gp.Latent.

Code 8.7

with pm.Model() as model_iris: 
    ℓ = pm.InverseGamma('ℓ', *get_ig_params(x_1)) 
    cov = pm.gp.cov.ExpQuad(1, ℓ) 
&...
lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Bayesian Analysis with Python - Third Edition
Published in: Jan 2024Publisher: PacktISBN-13: 9781805127161

Author (1)

author image
Osvaldo Martin

Osvaldo Martin is a researcher at CONICET, in Argentina. He has experience using Markov Chain Monte Carlo methods to simulate molecules and perform Bayesian inference. He loves to use Python to solve data analysis problems. He is especially motivated by the development and implementation of software tools for Bayesian statistics and probabilistic modeling. He is an open-source developer, and he contributes to Python libraries like PyMC, ArviZ and Bambi among others. He is interested in all aspects of the Bayesian workflow, including numerical methods for inference, diagnosis of sampling, evaluation and criticism of models, comparison of models and presentation of results.
Read more about Osvaldo Martin