Reader small image

You're reading from  Applied Supervised Learning with Python

Product typeBook
Published inApr 2019
Reading LevelIntermediate
Publisher
ISBN-139781789954920
Edition1st Edition
Languages
Right arrow
Authors (2):
Benjamin Johnston
Benjamin Johnston
author image
Benjamin Johnston

Benjamin Johnston is a senior data scientist for one of the world's leading data-driven MedTech companies and is involved in the development of innovative digital solutions throughout the entire product development pathway, from problem definition to solution research and development, through to final deployment. He is currently completing his Ph.D. in machine learning, specializing in image processing and deep convolutional neural networks. He has more than 10 years of experience in medical device design and development, working in a variety of technical roles, and holds first-class honors bachelor's degrees in both engineering and medical science from the University of Sydney, Australia.
Read more about Benjamin Johnston

Ishita Mathur
Ishita Mathur
author image
Ishita Mathur

Ishita Mathur has worked as a data scientist for 2.5 years with product-based start-ups working with business concerns in various domains and formulating them as technical problems that can be solved using data and machine learning. Her current work at GO-JEK involves the end-to-end development of machine learning projects, by working as part of a product team on defining, prototyping, and implementing data science models within the product. She completed her masters' degree in high-performance computing with data science at the University of Edinburgh, UK, and her bachelor's degree with honors in physics at St. Stephen's College, Delhi.
Read more about Ishita Mathur

View More author details
Right arrow

Introduction


In the previous chapters, we discussed the two types of supervised learning problems: regression and classification. We looked at a number of algorithms for each type and delved into how those algorithms worked.

But there are times when these algorithms, no matter how complex they are, just don't seem to perform well on the data that we have. There could be a variety of causes and reasons – perhaps the data is not good enough, perhaps there really is no trend where we are trying to find one, or perhaps the model itself is too complex.

Wait. What? How can a model being too complex be a problem? Oh, but it can! If a model is too complex and there isn't enough data, the model could fit so well to the data that it learns even the noise and outliers, which is never what we want.

Oftentimes, where a single complex algorithm can give us a result that is way off, aggregating the results from a group of models can give us a result that's closer to the actual truth. This is because there...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Applied Supervised Learning with Python
Published in: Apr 2019Publisher: ISBN-13: 9781789954920

Authors (2)

author image
Benjamin Johnston

Benjamin Johnston is a senior data scientist for one of the world's leading data-driven MedTech companies and is involved in the development of innovative digital solutions throughout the entire product development pathway, from problem definition to solution research and development, through to final deployment. He is currently completing his Ph.D. in machine learning, specializing in image processing and deep convolutional neural networks. He has more than 10 years of experience in medical device design and development, working in a variety of technical roles, and holds first-class honors bachelor's degrees in both engineering and medical science from the University of Sydney, Australia.
Read more about Benjamin Johnston

author image
Ishita Mathur

Ishita Mathur has worked as a data scientist for 2.5 years with product-based start-ups working with business concerns in various domains and formulating them as technical problems that can be solved using data and machine learning. Her current work at GO-JEK involves the end-to-end development of machine learning projects, by working as part of a product team on defining, prototyping, and implementing data science models within the product. She completed her masters' degree in high-performance computing with data science at the University of Edinburgh, UK, and her bachelor's degree with honors in physics at St. Stephen's College, Delhi.
Read more about Ishita Mathur