Reader small image

You're reading from  Machine Learning with the Elastic Stack - Second Edition

Product typeBook
Published inMay 2021
Reading LevelBeginner
PublisherPackt
ISBN-139781801070034
Edition2nd Edition
Languages
Right arrow
Authors (3):
Rich Collier
Rich Collier
author image
Rich Collier

Rich Collier is a solutions architect at Elastic. Joining the Elastic team from the Prelert acquisition, Rich has over 20 years' experience as a solutions architect and pre-sales systems engineer for software, hardware, and service-based solutions. Rich's technical specialties include big data analytics, machine learning, anomaly detection, threat detection, security operations, application performance management, web applications, and contact center technologies. Rich is based in Boston, Massachusetts.
Read more about Rich Collier

Camilla Montonen
Camilla Montonen
author image
Camilla Montonen

Camilla Montonen is a Senior Machine Learning Engineer at Elastic.
Read more about Camilla Montonen

Bahaaldine Azarmi
Bahaaldine Azarmi
author image
Bahaaldine Azarmi

Bahaaldine Azarmi, Global VP Customer Engineering at Elastic, guides companies as they leverage data architecture, distributed systems, machine learning, and generative AI. He leads the customer engineering team, focusing on cloud consumption, and is passionate about sharing knowledge to build and inspire a community skilled in AI.
Read more about Bahaaldine Azarmi

View More author details
Right arrow

Evaluating outlier detection with the Evaluate API

In the previous section, we touched on the fact it can be hard for a user to know how to set the threshold for outlier scores in order to group the data points in the dataset into normal and outlier categories. In this section, we will show how to approach this issue if you have a labeled dataset that contains, for each point, the ground truth values that record whether the point is an outlier. Before we dive into the practical demonstration, let's take a moment to understand some key performance metrics that are used in evaluating the performance of the outlier detection algorithm.

One of the simplest ways we can measure the performance of the algorithm is to compute the number of data points that it correctly predicted as outliers; in other words, the number of true positives (TPs). In addition, we also want to know the number of true negatives (TNs): how many normal data points were correctly predicted as normal. By extension...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Machine Learning with the Elastic Stack - Second Edition
Published in: May 2021Publisher: PacktISBN-13: 9781801070034

Authors (3)

author image
Rich Collier

Rich Collier is a solutions architect at Elastic. Joining the Elastic team from the Prelert acquisition, Rich has over 20 years' experience as a solutions architect and pre-sales systems engineer for software, hardware, and service-based solutions. Rich's technical specialties include big data analytics, machine learning, anomaly detection, threat detection, security operations, application performance management, web applications, and contact center technologies. Rich is based in Boston, Massachusetts.
Read more about Rich Collier

author image
Camilla Montonen

Camilla Montonen is a Senior Machine Learning Engineer at Elastic.
Read more about Camilla Montonen

author image
Bahaaldine Azarmi

Bahaaldine Azarmi, Global VP Customer Engineering at Elastic, guides companies as they leverage data architecture, distributed systems, machine learning, and generative AI. He leads the customer engineering team, focusing on cloud consumption, and is passionate about sharing knowledge to build and inspire a community skilled in AI.
Read more about Bahaaldine Azarmi