Reader small image

You're reading from  Drone Development from Concept to Flight

Product typeBook
Published inApr 2024
PublisherPackt
ISBN-139781837633005
Edition1st Edition
Concepts
Right arrow
Author (1)
Sumit Sharma
Sumit Sharma
author image
Sumit Sharma

Sumit Sharma has rich experience in Unmanned systems with specialization in Drones architecture development and testing for different applications. He is experienced in Drone Mechanics, Avionics, Design and manufacturing. In his early career, he was involved in the development and testing of the first approved agriculture drone and later getting it approved by the DGCA. Along with this, he has contributed to the development of a Survey drone for Aerial Surveys. He was also involved in the development of high speed and long range surveillance drones for defence tenders. Sumit has been involved in early agriculture spraying pilot projects and was a part of Aerial Spraying on the Locust which hit Rajasthan in 2020.
Read more about Sumit Sharma

Right arrow

Major mechanical and structural components of a drone

A drone system is a robotic system that is composed of electro-mechanical systems for all its functions. A mechanical system is called a skeleton, the drone under which all the avionics system works. The mechanical system holds the avionics system firmly with it with appropriate strength so that it can take maneuver forces upon it to its limits.

We will study here the major mechanical and structural components of a drone, which are required to hold different parts and have their independent functionalities.

Airframe

The airframe is the main skeleton of a drone, which holds all avionics components in position and helps them to be mounted and fit firmly without any vibrations and loose fitting during the flight. It works as the main body of the drone, which gives the system a proper shape and size, confines all modules, and protects them from direct exposure to the external environment:

Figure 1.12 – A hexacopter carbon fiber airframe

Figure 1.12 – A hexacopter carbon fiber airframe

A complete airframe is composed of the following subcomponents:

  • Motor mounts: Places to hold the motors using screws or other materials:
Figure 1.13 – A motor mount

Figure 1.13 – A motor mount

  • Arms: Tubes/pipes between the main body and motor mounts are called arms. These are used as a stiff mechanical structure to lift the main body and wiring between motors and the main body:
Figure 1.14 – An arm set

Figure 1.14 – An arm set

  • Hub: The hub is the place where the main avionics, such as flight controllers, the Global Positioning System (GPS), and other components, are placed with due interfacing and connection, which helps the system to get the necessary data to process. Arms are attached to the hub and extended outside:
Figure 1.15 – A drone hub

Figure 1.15 – A drone hub

  • Landing gear: This is also attached to the hub extending downward. This helps the drone to land on different terrains and also keeps adequate ground clearance for the safety of the payload:
Figure 1.16 – A landing gear

Figure 1.16 – A landing gear

In terms of the features of a mechanical airframe, the following is recommended:

  • The airframe should be symmetrical from all aspects on the x, y, and z axes
  • Manufacturing of the airframe is to be done from lightweight materials such as carbon fiber, glass fiber, and the like
  • A screwless design would be even more helpful for stability and performance
Previous PageNext Page
You have been reading a chapter from
Drone Development from Concept to Flight
Published in: Apr 2024Publisher: PacktISBN-13: 9781837633005
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime

Author (1)

author image
Sumit Sharma

Sumit Sharma has rich experience in Unmanned systems with specialization in Drones architecture development and testing for different applications. He is experienced in Drone Mechanics, Avionics, Design and manufacturing. In his early career, he was involved in the development and testing of the first approved agriculture drone and later getting it approved by the DGCA. Along with this, he has contributed to the development of a Survey drone for Aerial Surveys. He was also involved in the development of high speed and long range surveillance drones for defence tenders. Sumit has been involved in early agriculture spraying pilot projects and was a part of Aerial Spraying on the Locust which hit Rajasthan in 2020.
Read more about Sumit Sharma