Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Deep Reinforcement Learning Hands-On. - Second Edition

You're reading from  Deep Reinforcement Learning Hands-On. - Second Edition

Product type Book
Published in Jan 2020
Publisher Packt
ISBN-13 9781838826994
Pages 826 pages
Edition 2nd Edition
Languages
Author (1):
Maxim Lapan Maxim Lapan
Profile icon Maxim Lapan

Table of Contents (28) Chapters

Preface 1. What Is Reinforcement Learning? 2. OpenAI Gym 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. Higher-Level RL Libraries 8. DQN Extensions 9. Ways to Speed up RL 10. Stocks Trading Using RL 11. Policy Gradients – an Alternative 12. The Actor-Critic Method 13. Asynchronous Advantage Actor-Critic 14. Training Chatbots with RL 15. The TextWorld Environment 16. Web Navigation 17. Continuous Action Space 18. RL in Robotics 19. Trust Regions – PPO, TRPO, ACKTR, and SAC 20. Black-Box Optimization in RL 21. Advanced Exploration 22. Beyond Model-Free – Imagination 23. AlphaGo Zero 24. RL in Discrete Optimization 25. Multi-agent RL 26. Other Books You May Enjoy
27. Index

Prioritized replay buffer

The next very useful idea on how to improve DQN training was proposed in 2015 in the paper Prioritized Experience Replay ([7] Schaul and others, 2015). This method tries to improve the efficiency of samples in the replay buffer by prioritizing those samples according to the training loss.

The basic DQN used the replay buffer to break the correlation between immediate transitions in our episodes. As we discussed in Chapter 6, Deep Q-Networks, the examples we experience during the episode will be highly correlated, as most of the time, the environment is "smooth" and doesn't change much according to our actions. However, the stochastic gradient descent (SGD) method assumes that the data we use for training has an i.i.d. property. To solve this problem, the classic DQN method uses a large buffer of transitions, randomly sampled to get the next training batch.

The authors of the paper questioned this uniform random sample policy and proved...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}