Reader small image

You're reading from  Python Deep Learning

Product typeBook
Published inApr 2017
Reading LevelIntermediate
PublisherPackt
ISBN-139781786464453
Edition1st Edition
Languages
Right arrow
Authors (4):
Valentino Zocca
Valentino Zocca
author image
Valentino Zocca

Valentino Zocca has a PhD degree and graduated with a Laurea in mathematics from the University of Maryland, USA, and University of Rome, respectively, and spent a semester at the University of Warwick. He started working on high-tech projects of an advanced stereo 3D Earth visualization software with head tracking at Autometric, a company later bought by Boeing. There he developed many mathematical algorithms and predictive models, and using Hadoop he automated several satellite-imagery visualization programs. He has worked as an independent consultant at the U.S. Census Bureau, in the USA and in Italy. Currently, Valentino lives in New York and works as an independent consultant to a large financial company.
Read more about Valentino Zocca

Gianmario Spacagna
Gianmario Spacagna
author image
Gianmario Spacagna

Gianmario Spacagna is a senior data scientist at Pirelli, processing sensors and telemetry data for internet of things (IoT) and connected-vehicle applications. He works closely with tire mechanics, engineers, and business units to analyze and formulate hybrid, physics-driven, and data-driven automotive models. His main expertise is in building ML systems and end-to-end solutions for data products. He holds a master's degree in telematics from the Polytechnic of Turin, as well as one in software engineering of distributed systems from KTH, Stockholm. Prior to Pirelli, he worked in retail and business banking (Barclays), cyber security (Cisco), predictive marketing (AgilOne), and did some occasional freelancing.
Read more about Gianmario Spacagna

Daniel Slater
Daniel Slater
author image
Daniel Slater

Daniel Slater started programming at age 11, developing mods for the id Software game Quake. His obsession led him to become a developer working in the gaming industry on the hit computer game series Championship Manager. He then moved into finance, working on risk- and high-performance messaging systems. He now is a staff engineer working on big data at Skimlinks to understand online user behavior. He spends his spare time training AI to beat computer games. He talks at tech conferences about deep learning and reinforcement learning; and the name of his blog is Daniel Slater's blog. His work in this field has been cited by Google.
Read more about Daniel Slater

Peter Roelants
Peter Roelants
author image
Peter Roelants

Peter Roelants holds a master's in computer science with a specialization in AI from KU Leuven. He works on applying deep learning to a variety of problems, such as spectral imaging, speech recognition, text understanding, and document information extraction. He currently works at Onfido as a team leader for the data extraction research team, focusing on data extraction from official documents.
Read more about Peter Roelants

View More author details
Right arrow

Chapter 2. Neural Networks

In the previous chapter, we described several machine learning algorithms and we introduced different techniques to analyze data to make predictions. For example, we suggested how machines can use data of home selling prices to make predictions on the price for new houses. We described how large companies, such as Netflix, use machine learning techniques in order to suggest to users new movies they may like based on movies they have liked in the past, using a technique that is widely utilized in e-commerce by giants such as Amazon or Walmart. Most of these techniques, however, necessitate labeled data in order to make predictions on new data, and, in order to improve their performance, need humans to describe the data in terms of features that make sense.

Humans are able to quickly extrapolate patterns and infer rules without having the data cleaned and prepared for them. It would then be desirable if machines could learn to do the same. As we have discussed, Frank...

Why neural networks?


Neural networks have been around for many years, and they have gone through several periods during which they have fallen in and out of favor. However, in recent years, they have steadily gained ground over many other competing machine learning algorithms. The reason for this is that advanced neural net architecture has shown accuracy in many tasks that has far surpassed that of other algorithms. For example, in the field of image recognition, accuracy may be measured against a database of 16 million images named ImageNet.

Prior to the introduction of deep neural nets, accuracy had been improving at a slow rate, but after the introduction of deep neural networks, accuracy dropped from an error rate of 40% in 2010 to less than 7% in 2014, and this value is still falling. The human recognition rate is still lower, but only at about 5%. Given the success of deep neural networks, all entrants to the ImageNet competition in 2013 used some form of deep neural network. In addition...

Fundamentals


In the first chapter, we talked about three different approaches to machine learning: supervised learning, unsupervised learning, and reinforcement learning. Classical neural networks are a type of supervised machine learning, though we will see later that deep learning popularity is instead due to the fact that modern deep neural networks can be used in unsupervised learning tasks as well. In the next chapter, we will highlight the main differences between classical shallow neural networks and deep neural nets. For now, however, we will mainly concentrate on classical feed-forward networks that work in a supervised way. Our first question is, what exactly is a neural network? Probably the best way to interpret a neural network is to describe it as a mathematical model for information processing. While this may seem rather vague, it will become much clearer in the next chapters. A neural net is not a fixed program, but rather a model, a system that processes information, or...

Summary


In this chapter, we have introduced neural networks in detail and we have mentioned their success over other competing algorithms. Neural networks are comprised of the "units", or neurons, that belong to them or their connections, or weights, that characterize the strength of the communication between different neurons and their activity functions, that is, how the neurons process the information. We have discussed how we can create different architectures, and how a neural network can have many layers, and why inner (hidden) layers are important. We have explained how the information flows from the input to the output by passing from each layer to the next based on the weights and the activity function defined, and finally we have shown how we can define a method called back-propagation to "tune" the weights to improve the desired level of accuracy. We have also mentioned many of the areas where neural networks are and have been employed.

In the next chapter, we will continue discussing...

lock icon
The rest of the chapter is locked
You have been reading a chapter from
Python Deep Learning
Published in: Apr 2017Publisher: PacktISBN-13: 9781786464453
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime

Authors (4)

author image
Valentino Zocca

Valentino Zocca has a PhD degree and graduated with a Laurea in mathematics from the University of Maryland, USA, and University of Rome, respectively, and spent a semester at the University of Warwick. He started working on high-tech projects of an advanced stereo 3D Earth visualization software with head tracking at Autometric, a company later bought by Boeing. There he developed many mathematical algorithms and predictive models, and using Hadoop he automated several satellite-imagery visualization programs. He has worked as an independent consultant at the U.S. Census Bureau, in the USA and in Italy. Currently, Valentino lives in New York and works as an independent consultant to a large financial company.
Read more about Valentino Zocca

author image
Gianmario Spacagna

Gianmario Spacagna is a senior data scientist at Pirelli, processing sensors and telemetry data for internet of things (IoT) and connected-vehicle applications. He works closely with tire mechanics, engineers, and business units to analyze and formulate hybrid, physics-driven, and data-driven automotive models. His main expertise is in building ML systems and end-to-end solutions for data products. He holds a master's degree in telematics from the Polytechnic of Turin, as well as one in software engineering of distributed systems from KTH, Stockholm. Prior to Pirelli, he worked in retail and business banking (Barclays), cyber security (Cisco), predictive marketing (AgilOne), and did some occasional freelancing.
Read more about Gianmario Spacagna

author image
Daniel Slater

Daniel Slater started programming at age 11, developing mods for the id Software game Quake. His obsession led him to become a developer working in the gaming industry on the hit computer game series Championship Manager. He then moved into finance, working on risk- and high-performance messaging systems. He now is a staff engineer working on big data at Skimlinks to understand online user behavior. He spends his spare time training AI to beat computer games. He talks at tech conferences about deep learning and reinforcement learning; and the name of his blog is Daniel Slater's blog. His work in this field has been cited by Google.
Read more about Daniel Slater

author image
Peter Roelants

Peter Roelants holds a master's in computer science with a specialization in AI from KU Leuven. He works on applying deep learning to a variety of problems, such as spectral imaging, speech recognition, text understanding, and document information extraction. He currently works at Onfido as a team leader for the data extraction research team, focusing on data extraction from official documents.
Read more about Peter Roelants