Reader small image

You're reading from  OpenCV with Python Blueprints

Product typeBook
Published inOct 2015
Reading LevelIntermediate
PublisherPackt
ISBN-139781785282690
Edition1st Edition
Languages
Right arrow
Authors (2):
Michael Beyeler
Michael Beyeler
author image
Michael Beyeler

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler

Michael Beyeler (USD)
Michael Beyeler (USD)
author image
Michael Beyeler (USD)

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler (USD)

View More author details
Right arrow

Support Vector Machine


A Support Vector Machine (SVM) is a learner for binary classification (and regression) that tries to separate examples from the two different class labels with a decision boundary that maximizes the margin between the two classes.

Let's return to our example of positive and negative data samples, each of which has exactly two features (x and y) and two possible decision boundaries, as follows:

Both of these decision boundaries get the job done. They partition all the samples of positives and negatives with zero misclassifications. However, one of them seems intuitively better. How can we quantify "better" and thus learn the "best" parameter settings?

This is where SVMs come in. SVMs are also called maximal margin classifiers because they can be used to do exactly that; they define the decision boundary so as to make those two clouds of + and as far apart as possible.

For the preceding example, an SVM would find two lines that pass through the data points on the class...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
OpenCV with Python Blueprints
Published in: Oct 2015Publisher: PacktISBN-13: 9781785282690

Authors (2)

author image
Michael Beyeler

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler

author image
Michael Beyeler (USD)

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler (USD)