Reader small image

You're reading from  OpenCV with Python Blueprints

Product typeBook
Published inOct 2015
Reading LevelIntermediate
PublisherPackt
ISBN-139781785282690
Edition1st Edition
Languages
Right arrow
Authors (2):
Michael Beyeler
Michael Beyeler
author image
Michael Beyeler

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler

Michael Beyeler (USD)
Michael Beyeler (USD)
author image
Michael Beyeler (USD)

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler (USD)

View More author details
Right arrow

Reconstructing the scene


Finally, we can reconstruct the 3D scene by making use of a process called triangulation. We are able to infer the 3D coordinates of a point because of the way epipolar geometry works. By calculating the essential matrix, we get to know more about the geometry of the visual scene than we might think. Because the two cameras depict the same real-world scene, we know that most of the 3D real-world points will be found in both images. Moreover, we know that the mapping from the 2D image points to the corresponding 3D real-world points, will follow the rules of geometry. If we study a sufficiently large number of image points, we can construct, and solve, a (large) system of linear equations to get the ground truth of the real-world coordinates.

Let's return to the Swiss fountain dataset. If we ask two photographers to take a picture of the fountain from different viewpoints at the same time, it is not hard to realize that the first photographer might show up in the...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
OpenCV with Python Blueprints
Published in: Oct 2015Publisher: PacktISBN-13: 9781785282690

Authors (2)

author image
Michael Beyeler

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler

author image
Michael Beyeler (USD)

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler (USD)