Reader small image

You're reading from  OpenCV with Python Blueprints

Product typeBook
Published inOct 2015
Reading LevelIntermediate
PublisherPackt
ISBN-139781785282690
Edition1st Edition
Languages
Right arrow
Authors (2):
Michael Beyeler
Michael Beyeler
author image
Michael Beyeler

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler

Michael Beyeler (USD)
Michael Beyeler (USD)
author image
Michael Beyeler (USD)

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler (USD)

View More author details
Right arrow

Camera calibration


So far, we have worked with whatever image came straight out of our webcam, without questioning the way in which it was taken. However, every camera lens has unique parameters, such as focal length, principal point, and lens distortion. What happens behind the covers when a camera takes a picture, is that; light falls through a lens, followed by an aperture, before falling on the surface of a light sensor. This process can be approximated with the pinhole camera model. The process of estimating the parameters of a real-world lens such that it would fit the pinhole camera model is called camera calibration (or camera resectioning, and it should not be confused with photometric camera calibration).

The pinhole camera model

The pinhole camera model is a simplification of a real camera in which there is no lens and the camera aperture is approximated by a single point (the pinhole). When viewing a real-world 3D scene (such as a tree), light rays pass through the point-sized...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
OpenCV with Python Blueprints
Published in: Oct 2015Publisher: PacktISBN-13: 9781785282690

Authors (2)

author image
Michael Beyeler

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler

author image
Michael Beyeler (USD)

Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.
Read more about Michael Beyeler (USD)