Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Hands-On Graph Neural Networks Using Python

You're reading from  Hands-On Graph Neural Networks Using Python

Product type Book
Published in Apr 2023
Publisher Packt
ISBN-13 9781804617526
Pages 354 pages
Edition 1st Edition
Languages
Author (1):
Maxime Labonne Maxime Labonne
Profile icon Maxime Labonne

Table of Contents (25) Chapters

Preface Part 1: Introduction to Graph Learning
Chapter 1: Getting Started with Graph Learning Chapter 2: Graph Theory for Graph Neural Networks Chapter 3: Creating Node Representations with DeepWalk Part 2: Fundamentals
Chapter 4: Improving Embeddings with Biased Random Walks in Node2Vec Chapter 5: Including Node Features with Vanilla Neural Networks Chapter 6: Introducing Graph Convolutional Networks Chapter 7: Graph Attention Networks Part 3: Advanced Techniques
Chapter 8: Scaling Up Graph Neural Networks with GraphSAGE Chapter 9: Defining Expressiveness for Graph Classification Chapter 10: Predicting Links with Graph Neural Networks Chapter 11: Generating Graphs Using Graph Neural Networks Chapter 12: Learning from Heterogeneous Graphs Chapter 13: Temporal Graph Neural Networks Chapter 14: Explaining Graph Neural Networks Part 4: Applications
Chapter 15: Forecasting Traffic Using A3T-GCN Chapter 16: Detecting Anomalies Using Heterogeneous GNNs Chapter 17: Building a Recommender System Using LightGCN Chapter 18: Unlocking the Potential of Graph Neural Networks for Real-World Applications
Index Other Books You May Enjoy

Summary

In this chapter, we defined the expressive power of GNNs. This definition is based on another algorithm, the WL method, which outputs the canonical form of a graph. This algorithm is not perfect, but it can distinguish most graph structures. It inspired the GIN architecture, designed to be as expressive as the WL test and, therefore, strictly more expressive than GCNs, GATs, or GraphSAGE.

We then implemented this architecture for graph classification. We saw different methods to combine node embeddings into graph embeddings. GIN offers a new technique, which incorporates a sum operator and the concatenation of graph embeddings produced by every GIN layer. It significantly outperformed the classic global mean pooling obtained with GCN layers. Finally, we combined predictions made by both models into a simple ensemble, which increased the accuracy score even further.

In Chapter 10, Predicting Links with Graph Neural Networks, we will explore another popular task with GNNs...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}