Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Hands-On Graph Neural Networks Using Python

You're reading from  Hands-On Graph Neural Networks Using Python

Product type Book
Published in Apr 2023
Publisher Packt
ISBN-13 9781804617526
Pages 354 pages
Edition 1st Edition
Languages
Author (1):
Maxime Labonne Maxime Labonne
Profile icon Maxime Labonne

Table of Contents (25) Chapters

Preface Part 1: Introduction to Graph Learning
Chapter 1: Getting Started with Graph Learning Chapter 2: Graph Theory for Graph Neural Networks Chapter 3: Creating Node Representations with DeepWalk Part 2: Fundamentals
Chapter 4: Improving Embeddings with Biased Random Walks in Node2Vec Chapter 5: Including Node Features with Vanilla Neural Networks Chapter 6: Introducing Graph Convolutional Networks Chapter 7: Graph Attention Networks Part 3: Advanced Techniques
Chapter 8: Scaling Up Graph Neural Networks with GraphSAGE Chapter 9: Defining Expressiveness for Graph Classification Chapter 10: Predicting Links with Graph Neural Networks Chapter 11: Generating Graphs Using Graph Neural Networks Chapter 12: Learning from Heterogeneous Graphs Chapter 13: Temporal Graph Neural Networks Chapter 14: Explaining Graph Neural Networks Part 4: Applications
Chapter 15: Forecasting Traffic Using A3T-GCN Chapter 16: Detecting Anomalies Using Heterogeneous GNNs Chapter 17: Building a Recommender System Using LightGCN Chapter 18: Unlocking the Potential of Graph Neural Networks for Real-World Applications
Index Other Books You May Enjoy

Introducing GraphSAGE

Hamilton et al. introduced GraphSAGE in 2017 (see item [1] of the Further reading section) as a framework for inductive representation learning on large graphs (with over 100,000 nodes). Its goal is to generate node embeddings for downstream tasks, such as node classification. In addition, it solves two issues with GCNs and GATs – scaling to large graphs and efficiently generalizing to unseen data. In this section, we will explain how to implement it by describing the two main components of GraphSAGE:

  • Neighbor sampling
  • Aggregation

Let’s take a look at them.

Neighbor sampling

So far, we haven’t discussed an essential concept in traditional neural networks – mini-batching. It consists of dividing our dataset into smaller fragments, called batches. They are used in gradient descent, the optimization algorithm that finds the best weights and biases during training. There are three types of gradient descent:

    ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}