Reader small image

You're reading from  Clojure for Data Science

Product typeBook
Published inSep 2015
Reading LevelIntermediate
Publisher
ISBN-139781784397180
Edition1st Edition
Languages
Right arrow
Author (1)
Henry Garner
Henry Garner
author image
Henry Garner

Henry Garner is a graduate from the University of Oxford and an experienced developer, CTO, and coach. He started his technical career at Britain's largest telecoms provider, BT, working with a traditional data warehouse infrastructure. As a part of a small team for 3 years, he built sophisticated data models to derive insight from raw data and use web applications to present the results. These applications were used internally by senior executives and operatives to track both business and systems performance. He then went on to co-found Likely, a social media analytics start-up. As the CTO, he set the technical direction, leading to the introduction of an event-based append-only data pipeline modeled after the Lambda architecture. He adopted Clojure in 2011 and led a hybrid team of programmers and data scientists, building content recommendation engines based on collaborative filtering and clustering techniques. He developed a syllabus and copresented a series of evening classes from Likely's offices for professional developers who wanted to learn Clojure. Henry now works with growing businesses, consulting in both a development and technical leadership capacity. He presents regularly at seminars and Clojure meetups in and around London.
Read more about Henry Garner

Right arrow

Multiple linear regression


We've seen so far in this chapter how to build a regression line with one independent variable. However, it is often desirable to build a model with several independent variables. This is called multiple linear regression.

Each independent variable is going to need its own coefficient. Rather than working our way through the alphabet to represent each one, let's designate a new variable β, pronounced "beta", to hold all of our coefficients:

This model is equivalent to our bivariate linear regression model, where and so long as we ensure that x1 is always equal to one. This ensures that β1 is always a constant factor representing our intercept. x1 is called the bias term.

Having generalized the linear equation in terms of beta, easy to extend to as many coefficients as we'd like:

Each of the values of x1 up to xn correspond to an independent variable that might help explain the value of y. Each of the values of β1 up to βn correspond to a coefficient that determines...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Clojure for Data Science
Published in: Sep 2015Publisher: ISBN-13: 9781784397180

Author (1)

author image
Henry Garner

Henry Garner is a graduate from the University of Oxford and an experienced developer, CTO, and coach. He started his technical career at Britain's largest telecoms provider, BT, working with a traditional data warehouse infrastructure. As a part of a small team for 3 years, he built sophisticated data models to derive insight from raw data and use web applications to present the results. These applications were used internally by senior executives and operatives to track both business and systems performance. He then went on to co-found Likely, a social media analytics start-up. As the CTO, he set the technical direction, leading to the introduction of an event-based append-only data pipeline modeled after the Lambda architecture. He adopted Clojure in 2011 and led a hybrid team of programmers and data scientists, building content recommendation engines based on collaborative filtering and clustering techniques. He developed a syllabus and copresented a series of evening classes from Likely's offices for professional developers who wanted to learn Clojure. Henry now works with growing businesses, consulting in both a development and technical leadership capacity. He presents regularly at seminars and Clojure meetups in and around London.
Read more about Henry Garner