Reader small image

You're reading from  Mastering Embedded Linux Programming - Third Edition

Product typeBook
Published inMay 2021
PublisherPackt
ISBN-139781789530384
Edition3rd Edition
Right arrow
Authors (2):
Frank Vasquez
Frank Vasquez
author image
Frank Vasquez

Frank Vasquez is an independent software consultant specializing in consumer electronics. He has over a decade of experience designing and building embedded Linux systems. During that time, he has shipped numerous devices including a rackmount DSP audio server, a diver-held sonar camcorder, and a consumer IoT hotspot. Before his career as an embedded Linux engineer, Frank was a database kernel developer at IBM where he worked on DB2. He lives in Silicon Valley.
Read more about Frank Vasquez

Chris Simmonds
Chris Simmonds
author image
Chris Simmonds

Chris Simmonds is a software consultant and trainer living in southern England. He has almost two decades of experience in designing and building open-source embedded systems. He is the founder and chief consultant at 2net Ltd, which provides professional training and mentoring services in embedded Linux, Linux device drivers, and Android platform development. He has trained engineers at many of the biggest companies in the embedded world, including ARM, Qualcomm, Intel, Ericsson, and General Dynamics. He is a frequent presenter at open source and embedded conferences, including the Embedded Linux Conference and Embedded World.
Read more about Chris Simmonds

View More author details
Right arrow

Selecting the best idle state

When a processor has no more work to do, it executes a halt instruction and enters
an idle state. While idle, the CPU uses less power. It exits the idle state when an event
such as a hardware interrupt occurs. Most CPUs have multiple idle states that use
varying amounts of power. Usually, there is a trade-off between the power usage and the latency, or the length of time, it takes to exit the state. In the ACPI specification, they are called C-states.

In the deeper C-states, more circuitry is turned off at the expense of losing some state, and so it takes longer to return to normal operation. For example, in some C-states the CPU caches may be powered off, and so when the CPU runs again, it may have to reload some information from the main memory. This is expensive, and so you only want to do this if there is a good chance that the CPU will remain in this state for some time. The number of states varies from one system to another. Each takes some time...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Mastering Embedded Linux Programming - Third Edition
Published in: May 2021Publisher: PacktISBN-13: 9781789530384

Authors (2)

author image
Frank Vasquez

Frank Vasquez is an independent software consultant specializing in consumer electronics. He has over a decade of experience designing and building embedded Linux systems. During that time, he has shipped numerous devices including a rackmount DSP audio server, a diver-held sonar camcorder, and a consumer IoT hotspot. Before his career as an embedded Linux engineer, Frank was a database kernel developer at IBM where he worked on DB2. He lives in Silicon Valley.
Read more about Frank Vasquez

author image
Chris Simmonds

Chris Simmonds is a software consultant and trainer living in southern England. He has almost two decades of experience in designing and building open-source embedded systems. He is the founder and chief consultant at 2net Ltd, which provides professional training and mentoring services in embedded Linux, Linux device drivers, and Android platform development. He has trained engineers at many of the biggest companies in the embedded world, including ARM, Qualcomm, Intel, Ericsson, and General Dynamics. He is a frequent presenter at open source and embedded conferences, including the Embedded Linux Conference and Embedded World.
Read more about Chris Simmonds