Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Mastering Embedded Linux Programming - Third Edition

You're reading from  Mastering Embedded Linux Programming - Third Edition

Product type Book
Published in May 2021
Publisher Packt
ISBN-13 9781789530384
Pages 758 pages
Edition 3rd Edition
Languages
Authors (2):
Frank Vasquez Frank Vasquez
Profile icon Frank Vasquez
Chris Simmonds Chris Simmonds
Profile icon Chris Simmonds
View More author details

Table of Contents (27) Chapters

Preface Section 1: Elements of Embedded Linux
Chapter 1: Starting Out Chapter 2: Learning about Toolchains Chapter 3: All about Bootloaders Chapter 4: Configuring and Building the Kernel Chapter 5: Building a Root Filesystem Chapter 6: Selecting a Build System Chapter 7: Developing with Yocto Chapter 8: Yocto Under the Hood Section 2: System Architecture and Design Decisions
Chapter 9: Creating a Storage Strategy Chapter 10: Updating Software in the Field Chapter 11: Interfacing with Device Drivers Chapter 12: Prototyping with Breakout Boards Chapter 13: Starting Up – The init Program Chapter 14: Starting with BusyBox runit Chapter 15: Managing Power Section 3: Writing Embedded Applications
Chapter 16: Packaging Python Chapter 17: Learning about Processes and Threads Chapter 18: Managing Memory Section 4: Debugging and Optimizing Performance
Chapter 19: Debugging with GDB Chapter 20: Profiling and Tracing Chapter 21: Real-Time Programming Other Books You May Enjoy

High-resolution timers

Timer resolution is important if you have precise timing requirements, which is typical for real-time applications. The default timer in Linux is a clock that runs at a configurable rate, typically 100 Hz for embedded systems and 250 Hz for servers and desktops. The interval between two timer ticks is known as a jiffy and, in the examples given previously, is 10 milliseconds on an embedded SoC and 4 milliseconds on a server.

Linux gained more accurate timers from the real-time kernel project in version 2.6.18, and now they are available on all platforms, provided that there is a high-resolution timer source and device driver for it—which is almost always the case. You need to configure the kernel with CONFIG_HIGH_RES_TIMERS=y.

With this enabled, all the kernel and user space clocks will be accurate down to the granularity of the underlying hardware. Finding the actual clock granularity is difficult. The obvious answer is the value provided by clock_getres...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime}