Reader small image

You're reading from  Bayesian Analysis with Python - Third Edition

Product typeBook
Published inJan 2024
Reading LevelExpert
PublisherPackt
ISBN-139781805127161
Edition3rd Edition
Languages
Right arrow
Author (1)
Osvaldo Martin
Osvaldo Martin
author image
Osvaldo Martin

Osvaldo Martin is a researcher at CONICET, in Argentina. He has experience using Markov Chain Monte Carlo methods to simulate molecules and perform Bayesian inference. He loves to use Python to solve data analysis problems. He is especially motivated by the development and implementation of software tools for Bayesian statistics and probabilistic modeling. He is an open-source developer, and he contributes to Python libraries like PyMC, ArviZ and Bambi among others. He is interested in all aspects of the Bayesian workflow, including numerical methods for inference, diagnosis of sampling, evaluation and criticism of models, comparison of models and presentation of results.
Read more about Osvaldo Martin

Right arrow

5.4 Calculating predictive accuracy with ArviZ

Fortunately, calculating WAIC and LOO with ArviZ is very simple. We just need to be sure that the Inference Data has the log-likelihood group. When computing a posterior with PyMC, this can be achieved by doing pm.sample(idata_kwargs="log_likelihood": True). Now, let’s see how to compute LOO:

Code 5.3

az.loo(idata_l)

Computed from 8000 posterior samples and 33 observations log-likelihood matrix.

         Estimate       SE elpd_loo   -14.31     2.67
p_loo        2.40        -
------

Pareto k diagnostic values:
                         Count...
lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Bayesian Analysis with Python - Third Edition
Published in: Jan 2024Publisher: PacktISBN-13: 9781805127161

Author (1)

author image
Osvaldo Martin

Osvaldo Martin is a researcher at CONICET, in Argentina. He has experience using Markov Chain Monte Carlo methods to simulate molecules and perform Bayesian inference. He loves to use Python to solve data analysis problems. He is especially motivated by the development and implementation of software tools for Bayesian statistics and probabilistic modeling. He is an open-source developer, and he contributes to Python libraries like PyMC, ArviZ and Bambi among others. He is interested in all aspects of the Bayesian workflow, including numerical methods for inference, diagnosis of sampling, evaluation and criticism of models, comparison of models and presentation of results.
Read more about Osvaldo Martin