Reader small image

You're reading from  Mastering Graphics Programming with Vulkan

Product typeBook
Published inFeb 2023
PublisherPackt
ISBN-139781803244792
Edition1st Edition
Right arrow
Authors (2):
Marco Castorina
Marco Castorina
author image
Marco Castorina

Marco Castorina first got familiar with Vulkan while working as a driver developer at Samsung. Later he developed a 2D and 3D renderer in Vulkan from scratch for a leading media-server company. He recently joined the games graphics performance team at AMD. In his spare time, he keeps up to date with the latest techniques in real-time graphics.
Read more about Marco Castorina

Gabriel Sassone
Gabriel Sassone
author image
Gabriel Sassone

Gabriel Sassone is a rendering enthusiast currently working as a Principal Rendering Engineer at Multiplayer Group. Previously working for Avalanche Studios, where his first contact with Vulkan happened, where they developed the Vulkan layer for the proprietary Apex Engine and its Google Stadia Port. He previously worked at ReadyAtDawn, Codemasters, FrameStudios, and some non-gaming tech companies. His spare time is filled with music and rendering, gaming, and outdoor activities.
Read more about Gabriel Sassone

View More author details
Right arrow

Understanding task and mesh shaders

Before we begin, we should mention that mesh shaders can be used without task shaders. If, for instance, you wanted to perform culling or some other pre-processing step on the meshlets on the CPU, you are free to do so.

Also, note that task and mesh shaders replace vertex shaders in the graphics pipeline. The output of mesh shaders is going to be consumed by the fragment shader directly.

The following diagram illustrates the differences between the traditional geometry pipeline and the mesh shader pipeline:

Figure 6.4 – The difference between traditional and mesh pipeline

Figure 6.4 – The difference between traditional and mesh pipeline

In this section, we are going to provide an overview of how task and mesh shaders work and then use this information to implement back-face and frustum culling using task shaders.

Both task and mesh shaders use the same execution model of compute shaders, with some minor changes. The output of task shaders is consumed directly by a mesh...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Mastering Graphics Programming with Vulkan
Published in: Feb 2023Publisher: PacktISBN-13: 9781803244792

Authors (2)

author image
Marco Castorina

Marco Castorina first got familiar with Vulkan while working as a driver developer at Samsung. Later he developed a 2D and 3D renderer in Vulkan from scratch for a leading media-server company. He recently joined the games graphics performance team at AMD. In his spare time, he keeps up to date with the latest techniques in real-time graphics.
Read more about Marco Castorina

author image
Gabriel Sassone

Gabriel Sassone is a rendering enthusiast currently working as a Principal Rendering Engineer at Multiplayer Group. Previously working for Avalanche Studios, where his first contact with Vulkan happened, where they developed the Vulkan layer for the proprietary Apex Engine and its Google Stadia Port. He previously worked at ReadyAtDawn, Codemasters, FrameStudios, and some non-gaming tech companies. His spare time is filled with music and rendering, gaming, and outdoor activities.
Read more about Gabriel Sassone