Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Mastering Graphics Programming with Vulkan

You're reading from  Mastering Graphics Programming with Vulkan

Product type Book
Published in Feb 2023
Publisher Packt
ISBN-13 9781803244792
Pages 382 pages
Edition 1st Edition
Languages
Authors (2):
Marco Castorina Marco Castorina
Profile icon Marco Castorina
Gabriel Sassone Gabriel Sassone
Profile icon Gabriel Sassone
View More author details

Table of Contents (21) Chapters

Preface 1. Part 1: Foundations of a Modern Rendering Engine
2. Chapter 1: Introducing the Raptor Engine and Hydra 3. Chapter 2: Improving Resources Management 4. Chapter 3: Unlocking Multi-Threading 5. Chapter 4: Implementing a Frame Graph 6. Chapter 5: Unlocking Async Compute 7. Part 2: GPU-Driven Rendering
8. Chapter 6: GPU-Driven Rendering 9. Chapter 7: Rendering Many Lights with Clustered Deferred Rendering 10. Chapter 8: Adding Shadows Using Mesh Shaders 11. Chapter 9: Implementing Variable Rate Shading 12. Chapter 10: Adding Volumetric Fog 13. Part 3: Advanced Rendering Techniques
14. Chapter 11: Temporal Anti-Aliasing 15. Chapter 12: Getting Started with Ray Tracing 16. Chapter 13: Revisiting Shadows with Ray Tracing 17. Chapter 14: Adding Dynamic Diffuse Global Illumination with Ray Tracing 18. Chapter 15: Adding Reflections with Ray Tracing 19. Index 20. Other Books You May Enjoy

Summary

In this chapter, we implemented a frame graph to improve the management of rendering passes and make it easier to expand our rendering pipeline in future chapters. We started by covering the basic concepts, nodes and edges, that define a graph.

Next, we gave an overview of the structure of our graph and how it’s encoded in JSON format. We also mentioned why we went for this approach as opposed to defining the graph fully in code.

In the last part, we detailed how the graph is processed and made ready for execution. We gave an overview of the main data structures used for the graph, and covered how the graph is parsed to create nodes and resources, and how edges are computed. Next, we explained the topological sorting of nodes, which ensures they are executed in the correct order. We followed that with the memory allocation strategy, which allows us to reuse memory from resources that are no longer needed at given nodes. Finally, we provided an overview of the rendering...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}