Reader small image

You're reading from  Serverless ETL and Analytics with AWS Glue

Product typeBook
Published inAug 2022
Reading LevelExpert
PublisherPackt
ISBN-139781800564985
Edition1st Edition
Languages
Right arrow
Authors (6):
Vishal Pathak
Vishal Pathak
author image
Vishal Pathak

Vishal Pathak is a Data Lab Solutions Architect at AWS. Vishal works with customers on their use cases, architects solutions to solve their business problems, and helps them build scalable prototypes. Prior to his journey in AWS, Vishal helped customers implement business intelligence, data warehouse, and data lake projects in the US and Australia.
Read more about Vishal Pathak

Subramanya Vajiraya
Subramanya Vajiraya
author image
Subramanya Vajiraya

Subramanya Vajiraya is a Big data Cloud Engineer at AWS Sydney specializing in AWS Glue. He obtained his Bachelor of Engineering degree specializing in Information Science & Engineering from NMAM Institute of Technology, Nitte, KA, India (Visvesvaraya Technological University, Belgaum) in 2015 and obtained his Master of Information Technology degree specialized in Internetworking from the University of New South Wales, Sydney, Australia in 2017. He is passionate about helping customers solve challenging technical issues related to their ETL workload and implementing scalable data integration and analytics pipelines on AWS.
Read more about Subramanya Vajiraya

Noritaka Sekiyama
Noritaka Sekiyama
author image
Noritaka Sekiyama

Noritaka Sekiyama is a Senior Big Data Architect on the AWS Glue and AWS Lake Formation team. He has 11 years of experience working in the software industry. Based in Tokyo, Japan, he is responsible for implementing software artifacts, building libraries, troubleshooting complex issues and helping guide customer architectures
Read more about Noritaka Sekiyama

Tomohiro Tanaka
Tomohiro Tanaka
author image
Tomohiro Tanaka

Tomohiro Tanaka is a senior cloud support engineer at AWS. He works to help customers solve their issues and build data lakes across AWS Glue, AWS IoT, and big data technologies such Apache Spark, Hadoop, and Iceberg.
Read more about Tomohiro Tanaka

Albert Quiroga
Albert Quiroga
author image
Albert Quiroga

Albert Quiroga works as a senior solutions architect at Amazon, where he is helping to design and architect one of the largest data lakes in the world. Prior to that, he spent four years working at AWS, where he specialized in big data technologies such as EMR and Athena, and where he became an expert on AWS Glue. Albert has worked with several Fortune 500 companies on some of the largest data lakes in the world and has helped to launch and develop features for several AWS services.
Read more about Albert Quiroga

Ishan Gaur
Ishan Gaur
author image
Ishan Gaur

Ishan Gaur has more than 13 years of IT experience in soft ware development and data engineering, building distributed systems and highly scalable ETL pipelines using Apache Spark, Scala, and various ETL tools such as Ab Initio and Datastage. He currently works at AWS as a senior big data cloud engineer and is an SME of AWS Glue. He is responsible for helping customers to build out large, scalable distributed systems and implement them in AWS cloud environments using various big data services, including EMR, Glue, and Athena, as well as other technologies, such as Apache Spark, Hadoop, and Hive.
Read more about Ishan Gaur

View More author details
Right arrow

Types of data processing – OLTP and OLAP

Traditionally, data storage systems have been classified as Online Transaction Processing (OLTP) and Online Analytical Processing (OLAP). OLTP systems are responsible for day-to-day business executions. For instance, when you call your phone carrier’s customer service to add a new value pack to your phone plan, the customer service agent quickly pulls up the account information for your phone number and adds your desired value pack. The system that’s used by the customer service agent is designed to be fast so that the customer wait time can be minimized, which allows the customer service agent to be more efficient and serve customers faster. The system is also designed so that it updates the data quickly so that a large number of concurrent transactions can be processed. This allows the customer service agent to confirm that the value pack has been successfully applied to the account. Other examples include banking and shopping applications.

These faster updates are achieved by using a normalized data model. Normalization is the process of structuring the dataset as per a set of normal-forms to reduce redundancy and enhance data integrity. The normalized data model ensures that you don’t update multiple tables with the same information for a user operation. This is done by reducing the redundancy of the data in these systems. For example, if a customer updates their preferred_name, we can make this change in one table; the rest of the dependent tables will use customer_id to fetch updated information. So, a typical SQL query for the CRM application that’s used by the customer service agent contains the customer_id = 'xxxxxx' expression or data_plan_id = 'xxxxxx' in the WHERE clause.

These OLTP systems are not designed for obtaining or analyzing trends – for example, a query for gathering the mobile data usage (volume) of all customers over the last 2 years. Such queries involve joining a lot of tables on the OLTP side because of normalizations and usually results in poor performance as the amount of data scales up.

This problem can be solved by using OLAP systems. OLAP systems typically use the data warehouse of an organization, where they are utilized for executing complex queries over a large amount of data. They generally store historical datasets.

So, while both OLAP and OLTP have different ways of storing data and are designed for different use cases, the data on which they operate can be the same – the data is just modeled differently. Since both systems work on the same data, the data must be moved from one system to another. OLTP systems support live business transactions, so data generally originates there. This data is then brought into a data warehouse through an Extract, Transform, Load (ETL) or Extract, Load, Transform (ELT) tool so that it can then be consumed by OLAP systems. The following table explains the differences between OLTP and OLAP:

Table 1.1 – Differences between OLTP and OLAP

Table 1.1 – Differences between OLTP and OLAP

Now that we understand the fundamentals of the OLTP and OLAP models, let’s explore different data management systems, such as data warehouses, data marts, data lakes, data lakehouses, and data meshes.

Previous PageNext Page
You have been reading a chapter from
Serverless ETL and Analytics with AWS Glue
Published in: Aug 2022Publisher: PacktISBN-13: 9781800564985
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime

Authors (6)

author image
Vishal Pathak

Vishal Pathak is a Data Lab Solutions Architect at AWS. Vishal works with customers on their use cases, architects solutions to solve their business problems, and helps them build scalable prototypes. Prior to his journey in AWS, Vishal helped customers implement business intelligence, data warehouse, and data lake projects in the US and Australia.
Read more about Vishal Pathak

author image
Subramanya Vajiraya

Subramanya Vajiraya is a Big data Cloud Engineer at AWS Sydney specializing in AWS Glue. He obtained his Bachelor of Engineering degree specializing in Information Science & Engineering from NMAM Institute of Technology, Nitte, KA, India (Visvesvaraya Technological University, Belgaum) in 2015 and obtained his Master of Information Technology degree specialized in Internetworking from the University of New South Wales, Sydney, Australia in 2017. He is passionate about helping customers solve challenging technical issues related to their ETL workload and implementing scalable data integration and analytics pipelines on AWS.
Read more about Subramanya Vajiraya

author image
Noritaka Sekiyama

Noritaka Sekiyama is a Senior Big Data Architect on the AWS Glue and AWS Lake Formation team. He has 11 years of experience working in the software industry. Based in Tokyo, Japan, he is responsible for implementing software artifacts, building libraries, troubleshooting complex issues and helping guide customer architectures
Read more about Noritaka Sekiyama

author image
Tomohiro Tanaka

Tomohiro Tanaka is a senior cloud support engineer at AWS. He works to help customers solve their issues and build data lakes across AWS Glue, AWS IoT, and big data technologies such Apache Spark, Hadoop, and Iceberg.
Read more about Tomohiro Tanaka

author image
Albert Quiroga

Albert Quiroga works as a senior solutions architect at Amazon, where he is helping to design and architect one of the largest data lakes in the world. Prior to that, he spent four years working at AWS, where he specialized in big data technologies such as EMR and Athena, and where he became an expert on AWS Glue. Albert has worked with several Fortune 500 companies on some of the largest data lakes in the world and has helped to launch and develop features for several AWS services.
Read more about Albert Quiroga

author image
Ishan Gaur

Ishan Gaur has more than 13 years of IT experience in soft ware development and data engineering, building distributed systems and highly scalable ETL pipelines using Apache Spark, Scala, and various ETL tools such as Ab Initio and Datastage. He currently works at AWS as a senior big data cloud engineer and is an SME of AWS Glue. He is responsible for helping customers to build out large, scalable distributed systems and implement them in AWS cloud environments using various big data services, including EMR, Glue, and Athena, as well as other technologies, such as Apache Spark, Hadoop, and Hive.
Read more about Ishan Gaur