Reader small image

You're reading from  Machine Learning for Imbalanced Data

Product typeBook
Published inNov 2023
Reading LevelBeginner
PublisherPackt
ISBN-139781801070836
Edition1st Edition
Languages
Concepts
Right arrow
Authors (2):
Kumar Abhishek
Kumar Abhishek
author image
Kumar Abhishek

Kumar Abhishek is a seasoned Senior Machine Learning Engineer at Expedia Group, US, specializing in risk analysis and fraud detection for Expedia brands. With over a decade of experience at companies such as Microsoft, Amazon, and a Bay Area startup, Kumar holds an MS in Computer Science from the University of Florida.
Read more about Kumar Abhishek

Dr. Mounir Abdelaziz
Dr. Mounir Abdelaziz
author image
Dr. Mounir Abdelaziz

Dr. Mounir Abdelaziz is a deep learning researcher specializing in computer vision applications. He holds a Ph.D. in computer science and technology from Central South University, China. During his Ph.D. journey, he developed innovative algorithms to address practical computer vision challenges. He has also authored numerous research articles in the field of few-shot learning for image classification.
Read more about Dr. Mounir Abdelaziz

View More author details
Right arrow

When to not worry about data imbalance

Class imbalance may not always negatively impact performance, and using imbalance-specific methods can sometimes worsen results [5]. Therefore, it’s crucial to accurately assess whether a task is genuinely affected by class imbalance before applying any specialized techniques. One such strategy can be as simple as setting up a baseline model without worrying about class imbalance and observing the model’s performance on various classes using various performance metrics.

Let’s explore scenarios where data imbalance may not be a concern and no corrective measures may be needed:

  • When the imbalance is small: If the imbalance in the dataset is relatively small, with the ratio of the minority class to the majority class being only slightly skewed (say 4:5 or 2:3), the impact on the model’s performance may be minimal. In such cases, the model may still perform reasonably well without requiring any special techniques to handle the imbalance.
  • When the goal is to predict the majority class: In some cases, the focus may be on predicting the majority class accurately, and the minority class may not be of particular interest. For example, in online ad placement, the focus can be on targeting users (majority class) likely to click on ads to maximize click-through rates and immediate revenue, while less attention is given to users (minority class) who may find ads annoying.
  • When the cost of misclassification is nearly equal for both classes: In some applications, the cost of misclassifying a positive class example is not high (that is, false negative). An example is classifying emails as spam or non-spam. It’s totally fine to miss a spam email once in a while and misclassify it as non-spam. In such cases, the impact of misclassification on the performance metrics may be negligible, and the imbalance may not be a concern.
  • When the dataset is sufficiently large: Even if the ratio of minority to majority class samples is very low, such as 1:100, and if the dataset is sufficiently large, with a large number of samples in both the minority and majority classes, the impact of data imbalance on the model’s performance may be reduced. With a larger dataset, the model may be able to learn the patterns in the minority class more effectively. However, it would still be advisable to compare the baseline model’s performance with the performance of models that take the data imbalance into account. For example, compare a baseline model to models with threshold adjustment, oversampling, and undersampling (Chapter 2, Oversampling Methods, and Chapter 3, Undersampling Methods), and algorithm-based techniques such as cost-sensitive learning (Chapter 5, Cost-Sensitive Learning).

In the next section, we will become familiar with a library that can be very useful when dealing with imbalanced data. We will train a model on an imbalanced toy dataset and look at some metrics to evaluate the performance of the trained model.

Previous PageNext Page
You have been reading a chapter from
Machine Learning for Imbalanced Data
Published in: Nov 2023Publisher: PacktISBN-13: 9781801070836
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime

Authors (2)

author image
Kumar Abhishek

Kumar Abhishek is a seasoned Senior Machine Learning Engineer at Expedia Group, US, specializing in risk analysis and fraud detection for Expedia brands. With over a decade of experience at companies such as Microsoft, Amazon, and a Bay Area startup, Kumar holds an MS in Computer Science from the University of Florida.
Read more about Kumar Abhishek

author image
Dr. Mounir Abdelaziz

Dr. Mounir Abdelaziz is a deep learning researcher specializing in computer vision applications. He holds a Ph.D. in computer science and technology from Central South University, China. During his Ph.D. journey, he developed innovative algorithms to address practical computer vision challenges. He has also authored numerous research articles in the field of few-shot learning for image classification.
Read more about Dr. Mounir Abdelaziz