Reader small image

You're reading from  Deep Learning with Hadoop

Product typeBook
Published inFeb 2017
Reading LevelIntermediate
PublisherPackt
ISBN-139781787124769
Edition1st Edition
Languages
Right arrow
Author (1)
Dipayan Dev
Dipayan Dev
author image
Dipayan Dev

Dipayan Dev has completed his M.Tech from National Institute of Technology, Silchar with a first class first and is currently working as a software professional in Bengaluru, India. He has extensive knowledge and experience in non-relational database technologies, having primarily worked with large-scale data over the last few years. His core expertise lies in Hadoop Framework. During his postgraduation, Dipayan had built an infinite scalable framework for Hadoop, called Dr. Hadoop, which got published in top-tier SCI-E indexed journal of Springer (http://link.springer.com/article/10.1631/FITEE.1500015). Dr. Hadoop has recently been cited by Goo Wikipedia in their Apache Hadoop article. Apart from that, he registers interest in a wide range of distributed system technologies, such as Redis, Apache Spark, Elasticsearch, Hive, Pig, Riak, and other NoSQL databases. Dipayan has also authored various research papers and book chapters, which are published by IEEE and top-tier Springer Journals. To know more about him, you can also visit his LinkedIn profile https://www.linkedin.com/in/dipayandev.
Read more about Dipayan Dev

Right arrow

Energy-based models


The main goal of deep learning and statistical modeling is to encode the dependencies between variables. By getting an idea of those dependencies, from the values of the known variables, a model can answer questions about the unknown variables.

Energy-based models (EBMs) [120] gather and collect the dependencies by identifying scaler energy, which generally is a measure of compatibility to each configuration of the variable. In EBMs, the predictions are made by setting the value of observed variables and finding the value of the unobserved variables, which minimize the overall energy. Learning in EBMs consists of formulating an energy function, which assigns low energies to the correct values of unobserved variables and higher energies to the incorrect ones. Energy-based learning can be treated as an alternative to probabilistic estimation for classification, decision-making, or prediction tasks.

To give a clear idea about how EBMs work, let us look at a simple example...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Deep Learning with Hadoop
Published in: Feb 2017Publisher: PacktISBN-13: 9781787124769

Author (1)

author image
Dipayan Dev

Dipayan Dev has completed his M.Tech from National Institute of Technology, Silchar with a first class first and is currently working as a software professional in Bengaluru, India. He has extensive knowledge and experience in non-relational database technologies, having primarily worked with large-scale data over the last few years. His core expertise lies in Hadoop Framework. During his postgraduation, Dipayan had built an infinite scalable framework for Hadoop, called Dr. Hadoop, which got published in top-tier SCI-E indexed journal of Springer (http://link.springer.com/article/10.1631/FITEE.1500015). Dr. Hadoop has recently been cited by Goo Wikipedia in their Apache Hadoop article. Apart from that, he registers interest in a wide range of distributed system technologies, such as Redis, Apache Spark, Elasticsearch, Hive, Pig, Riak, and other NoSQL databases. Dipayan has also authored various research papers and book chapters, which are published by IEEE and top-tier Springer Journals. To know more about him, you can also visit his LinkedIn profile https://www.linkedin.com/in/dipayandev.
Read more about Dipayan Dev