Reader small image

You're reading from  Data Engineering with Scala and Spark

Product typeBook
Published inJan 2024
PublisherPackt
ISBN-139781804612583
Edition1st Edition
Right arrow
Authors (3):
Eric Tome
Eric Tome
author image
Eric Tome

Eric Tome has over 25 years of experience working with data. He has contributed to and led teams that ingested, cleansed, standardized, and prepared data used by business intelligence, data science, and operations teams. He has a background in mathematics and currently works as a senior solutions architect at Databricks, helping customers solve their data and AI challenges.
Read more about Eric Tome

Rupam Bhattacharjee
Rupam Bhattacharjee
author image
Rupam Bhattacharjee

Rupam Bhattacharjee works as a lead data engineer at IBM. He has architected and developed data pipelines, processing massive structured and unstructured data using Spark and Scala for on-premises Hadoop and K8s clusters on the public cloud. He has a degree in electrical engineering.
Read more about Rupam Bhattacharjee

David Radford
David Radford
author image
David Radford

David Radford has worked in big data for over 10 years, with a focus on cloud technologies. He led consulting teams for several years, completing a migration from legacy systems to modern data stacks. He holds a master's degree in computer science and works as a senior solutions architect at Databricks.
Read more about David Radford

View More author details
Right arrow

Orchestrating our batch process

Now that we have our transformation written, it is time to build our pipeline. For this example, we will use our minikube instance that was set up as part of Installing Argo workflows section in Chapter 10.

Our workflow will print a message to start with, followed by Bronze, Silver, and Gold layer transformations, and finally a pipeline completion message. One important thing to note here is all of these steps will run as separate containers. What that means is data written by the Bronze layer will not be automatically available for Silver. In order to share data among containers, we need to use persistent volumes. There are several ways to do it, but for our example we will use hostPath, which is a type of PersistentVolumes supported by minikube. Please note that hostPath does not refer to a directory or file on your local machine, but rather within the minikube container. So we need to make the required datasets available so that Spark can find...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Data Engineering with Scala and Spark
Published in: Jan 2024Publisher: PacktISBN-13: 9781804612583

Authors (3)

author image
Eric Tome

Eric Tome has over 25 years of experience working with data. He has contributed to and led teams that ingested, cleansed, standardized, and prepared data used by business intelligence, data science, and operations teams. He has a background in mathematics and currently works as a senior solutions architect at Databricks, helping customers solve their data and AI challenges.
Read more about Eric Tome

author image
Rupam Bhattacharjee

Rupam Bhattacharjee works as a lead data engineer at IBM. He has architected and developed data pipelines, processing massive structured and unstructured data using Spark and Scala for on-premises Hadoop and K8s clusters on the public cloud. He has a degree in electrical engineering.
Read more about Rupam Bhattacharjee

author image
David Radford

David Radford has worked in big data for over 10 years, with a focus on cloud technologies. He led consulting teams for several years, completing a migration from legacy systems to modern data stacks. He holds a master's degree in computer science and works as a senior solutions architect at Databricks.
Read more about David Radford