Reader small image

You're reading from  Data Engineering with Scala and Spark

Product typeBook
Published inJan 2024
PublisherPackt
ISBN-139781804612583
Edition1st Edition
Right arrow
Authors (3):
Eric Tome
Eric Tome
author image
Eric Tome

Eric Tome has over 25 years of experience working with data. He has contributed to and led teams that ingested, cleansed, standardized, and prepared data used by business intelligence, data science, and operations teams. He has a background in mathematics and currently works as a senior solutions architect at Databricks, helping customers solve their data and AI challenges.
Read more about Eric Tome

Rupam Bhattacharjee
Rupam Bhattacharjee
author image
Rupam Bhattacharjee

Rupam Bhattacharjee works as a lead data engineer at IBM. He has architected and developed data pipelines, processing massive structured and unstructured data using Spark and Scala for on-premises Hadoop and K8s clusters on the public cloud. He has a degree in electrical engineering.
Read more about Rupam Bhattacharjee

David Radford
David Radford
author image
David Radford

David Radford has worked in big data for over 10 years, with a focus on cloud technologies. He led consulting teams for several years, completing a migration from legacy systems to modern data stacks. He holds a master's degree in computer science and works as a senior solutions architect at Databricks.
Read more about David Radford

View More author details
Right arrow

Ingesting the data

The first step in our pipeline is to ingest data from JSON files and establish a robust data process that efficiently processes and stores this data within our data platform. The initial destination for the incoming data will be our Bronze layer.

Our data, originating from our operations department, arrives in JSON format. As part of our data ingestion process, we will collect these JSON files and store the data in them in its original, unaltered state within the Bronze layer. This retention of raw data ensures that we maintain an immutable historical record of all incoming data, which can be invaluable for traceability, auditing, and data lineage purposes. Our operations department will be landing the data in a storage location for us once a day in a folder specific to that day; for example, /<storage_location/event_date=<yyyy-mm-dd>.

To further enhance the capabilities and manageability of our data, we will leverage the Delta Lake (Delta) format...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Data Engineering with Scala and Spark
Published in: Jan 2024Publisher: PacktISBN-13: 9781804612583

Authors (3)

author image
Eric Tome

Eric Tome has over 25 years of experience working with data. He has contributed to and led teams that ingested, cleansed, standardized, and prepared data used by business intelligence, data science, and operations teams. He has a background in mathematics and currently works as a senior solutions architect at Databricks, helping customers solve their data and AI challenges.
Read more about Eric Tome

author image
Rupam Bhattacharjee

Rupam Bhattacharjee works as a lead data engineer at IBM. He has architected and developed data pipelines, processing massive structured and unstructured data using Spark and Scala for on-premises Hadoop and K8s clusters on the public cloud. He has a degree in electrical engineering.
Read more about Rupam Bhattacharjee

author image
David Radford

David Radford has worked in big data for over 10 years, with a focus on cloud technologies. He led consulting teams for several years, completing a migration from legacy systems to modern data stacks. He holds a master's degree in computer science and works as a senior solutions architect at Databricks.
Read more about David Radford