Reader small image

You're reading from  F# for Machine Learning Essentials

Product typeBook
Published inFeb 2016
Reading LevelExpert
Publisher
ISBN-139781783989348
Edition1st Edition
Languages
Right arrow
Author (1)
Sudipta Mukherjee
Sudipta Mukherjee
author image
Sudipta Mukherjee

Sudipta Mukherjee was born in Kolkata and migrated to Bangalore. He is an electronics engineer by education and a computer engineer/scientist by profession and passion. He graduated in 2004 with a degree in electronics and communication engineering. He has a keen interest in data structure, algorithms, text processing, natural language processing tools development, programming languages, and machine learning at large. His first book on Data Structure using C has been received quite well. Parts of the book can be read on Google Books. The book was also translated into simplified Chinese, available from Amazon.cn. This is Sudipta's second book with Packt Publishing. His first book, .NET 4.0 Generics , was also received very well. During the last few years, he has been hooked to the functional programming style. His book on functional programming, Thinking in LINQ, was released in 2014. He lives in Bangalore with his wife and son. Sudipta can be reached via e-mail at sudipto80@yahoo.com and via Twitter at @samthecoder.
Read more about Sudipta Mukherjee

Right arrow

Pointwise Mutual Information


PMI between two words is calculated using the following formula:

represent the number of occurrences of the word word in the entire document collection. The original article that proposed this idea used the number of articles returned for the search word word from the AltaVista search engine. But you can safely use a probability (the number of documents in which the word word appeared divided by the total number of documents). The & operator in refers to the number of documents containing both words word1 and word2 divided by the total number of documents.

The following function finds the probability of the word in a document collection represented by list:

The following function finds the probability of the words w1 and w2 in a document collection represented by list:

The following function calculates the PMI between w1 and w2:

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
F# for Machine Learning Essentials
Published in: Feb 2016Publisher: ISBN-13: 9781783989348

Author (1)

author image
Sudipta Mukherjee

Sudipta Mukherjee was born in Kolkata and migrated to Bangalore. He is an electronics engineer by education and a computer engineer/scientist by profession and passion. He graduated in 2004 with a degree in electronics and communication engineering. He has a keen interest in data structure, algorithms, text processing, natural language processing tools development, programming languages, and machine learning at large. His first book on Data Structure using C has been received quite well. Parts of the book can be read on Google Books. The book was also translated into simplified Chinese, available from Amazon.cn. This is Sudipta's second book with Packt Publishing. His first book, .NET 4.0 Generics , was also received very well. During the last few years, he has been hooked to the functional programming style. His book on functional programming, Thinking in LINQ, was released in 2014. He lives in Bangalore with his wife and son. Sudipta can be reached via e-mail at sudipto80@yahoo.com and via Twitter at @samthecoder.
Read more about Sudipta Mukherjee