Hands-On Ensemble Learning with Python

By George Kyriakides , Konstantinos G. Margaritis
    Advance your knowledge in tech with a Packt subscription

  • Instant online access to over 7,500+ books and videos
  • Constantly updated with 100+ new titles each month
  • Breadth and depth in over 1,000+ technologies
  1. Section 1: Introduction and Required Software Tools

About this book

Ensembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model.

With its hands-on approach, you'll not only get up to speed with the basic theory but also the application of different ensemble learning techniques. Using examples and real-world datasets, you'll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. In addition to this, you'll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You'll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models.

By the end of this book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios.

Publication date:
July 2019
Publisher
Packt
Pages
298
ISBN
9781789612851

 

Section 1: Introduction and Required Software Tools

This section is a refresher on basic machine learning concepts and an introduction to ensemble learning. We will have an overview of machine learning and various concepts pertaining to it, such as train and test sets, supervised and unsupervised learning, and more. We will also learn about the concept of ensemble learning.

This section comprises the following chapters:

  • Chapter 1, A Machine Learning Refresher
  • Chapter 2, Getting Started with Ensemble Learning

About the Authors

  • George Kyriakides

    George Kyriakides is a Ph.D. researcher, studying distributed neural architecture search. His interests and experience include automated generation and optimization of predictive models for a wide array of applications, such as image recognition, time series analysis, and financial applications. He holds an M.Sc. in computational methods and applications, and a B.Sc. in applied informatics, both from the University of Macedonia, Thessaloniki, Greece.

    Browse publications by this author
  • Konstantinos G. Margaritis

    Konstantinos G. Margaritis has been a teacher and researcher in computer science for more than 30 years. His research interests include parallel and distributed computing as well as computational intelligence and machine learning. He holds an M.Eng. in electrical engineering (Aristotle University of Thessaloniki, Greece), as well as an M.Sc. and a Ph.D. in computer science (Loughborough University, UK). He is a professor at the Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece.

    Browse publications by this author
Book Title
Unlock this book and the full library for FREE
Start free trial