Reader small image

You're reading from  TLS Cryptography In-Depth

Product typeBook
Published inJan 2024
PublisherPackt
ISBN-139781804611951
Edition1st Edition
Concepts
Right arrow
Authors (2):
Dr. Paul Duplys
Dr. Paul Duplys
author image
Dr. Paul Duplys

Dr. Paul Duplys is chief expert for cybersecurity at the department for technical strategies and enabling within the Mobility sector of Robert Bosch GmbH, a Tier-1 automotive supplier and manufacturer of industrial, residential, and consumer goods. Previous to this position, he spent over 12 years with Bosch Corporate Research, where he led the security and privacy research program and conducted applied research in various fields of information security. Paul's research interests include security automation, software security, security economics, software engineering, and AI. Paul holds a PhD degree in computer science from the University of Tuebingen, Germany.
Read more about Dr. Paul Duplys

Dr. Roland Schmitz
Dr. Roland Schmitz
author image
Dr. Roland Schmitz

Dr. Roland Schmitz has been a professor of internet security at the Stuttgart Media University (HdM) since 2001. Prior to joining HdM, from 1995 to 2001, he worked as a research engineer at Deutsche Telekom, with a focus on mobile security and digital signature standardization. At HdM, Roland teaches courses on internet security, system security, security engineering, digital rights management, theoretical computer science, discrete mathematics, and game physics. He has published numerous scientific papers in the fields of internet and multimedia security. Moreover, he has authored and co-authored several books. Roland holds a PhD degree in mathematics from Technical University Braunschweig, Germany.
Read more about Dr. Roland Schmitz

View More author details
Right arrow

11.6 MAC versus CRC

Can we construct a MAC without a cryptographic hash function and without a secret key? Let’s take a look at the Cyclic Redundancy Check (CRC), which is popular error-detecting code used in communication systems to detect accidental errors in messages sent over a noisy or unreliable communication channel.

The working principle of error-detecting code is for the sender to encode their plaintext message in a redundant way. The redundancy, in turn, allows the receiver to detect a certain number of errors – that is, accidental bit flips – in the message they receive. The theory of channel coding, pioneered in the 1940s by the American mathematician Richard Hamming, aims to find code that has minimal overhead (that is, the least redundancy) but, at the same time, has a large number of valid code words and can correct or detect many errors.

CRC is so-called cyclic code, that is, a block code where a circular shift of every code word yields another valid...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
TLS Cryptography In-Depth
Published in: Jan 2024Publisher: PacktISBN-13: 9781804611951

Authors (2)

author image
Dr. Paul Duplys

Dr. Paul Duplys is chief expert for cybersecurity at the department for technical strategies and enabling within the Mobility sector of Robert Bosch GmbH, a Tier-1 automotive supplier and manufacturer of industrial, residential, and consumer goods. Previous to this position, he spent over 12 years with Bosch Corporate Research, where he led the security and privacy research program and conducted applied research in various fields of information security. Paul's research interests include security automation, software security, security economics, software engineering, and AI. Paul holds a PhD degree in computer science from the University of Tuebingen, Germany.
Read more about Dr. Paul Duplys

author image
Dr. Roland Schmitz

Dr. Roland Schmitz has been a professor of internet security at the Stuttgart Media University (HdM) since 2001. Prior to joining HdM, from 1995 to 2001, he worked as a research engineer at Deutsche Telekom, with a focus on mobile security and digital signature standardization. At HdM, Roland teaches courses on internet security, system security, security engineering, digital rights management, theoretical computer science, discrete mathematics, and game physics. He has published numerous scientific papers in the fields of internet and multimedia security. Moreover, he has authored and co-authored several books. Roland holds a PhD degree in mathematics from Technical University Braunschweig, Germany.
Read more about Dr. Roland Schmitz