Reader small image

You're reading from  R Deep Learning Essentials. - Second Edition

Product typeBook
Published inAug 2018
Reading LevelIntermediate
PublisherPackt
ISBN-139781788992893
Edition2nd Edition
Languages
Tools
Right arrow
Authors (2):
Mark Hodnett
Mark Hodnett
author image
Mark Hodnett

Mark Hodnett is a data scientist with over 20 years of industry experience in software development, business intelligence systems, and data science. He has worked in a variety of industries, including CRM systems, retail loyalty, IoT systems, and accountancy. He holds a master's in data science and an MBA. He works in Cork, Ireland, as a senior data scientist with AltViz.
Read more about Mark Hodnett

Joshua F. Wiley
Joshua F. Wiley
author image
Joshua F. Wiley

Joshua F. Wiley is a lecturer at Monash University, conducting quantitative research on sleep, stress, and health. He earned his Ph.D. from the University of California, Los Angeles and completed postdoctoral training in primary care and prevention. In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. He develops or co-develops a number of R packages including Varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.
Read more about Joshua F. Wiley

View More author details
Right arrow

Activation functions

The activation function determines the mapping between input and a hidden layer. It defines the functional form for how a neuron gets activated. For example, a linear activation function could be defined as: f(x) = x, in which case the value for the neuron would be the raw input, x. A linear activation function is shown in the top panel of Figure 4.2. Linear activation functions are rarely used because in practice deep learning models would find it difficult to learn non-linear functional forms using linear activation functions. In previous chapters, we used the hyperbolic tangent as an activation function, namely f(x) = tanh(x). Hyperbolic tangent can work well in some cases, but a potential limitation is that at either low or high values, it saturates, as shown in the middle panel of the figure 4.2.

Perhaps the most popular activation function currently...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
R Deep Learning Essentials. - Second Edition
Published in: Aug 2018Publisher: PacktISBN-13: 9781788992893

Authors (2)

author image
Mark Hodnett

Mark Hodnett is a data scientist with over 20 years of industry experience in software development, business intelligence systems, and data science. He has worked in a variety of industries, including CRM systems, retail loyalty, IoT systems, and accountancy. He holds a master's in data science and an MBA. He works in Cork, Ireland, as a senior data scientist with AltViz.
Read more about Mark Hodnett

author image
Joshua F. Wiley

Joshua F. Wiley is a lecturer at Monash University, conducting quantitative research on sleep, stress, and health. He earned his Ph.D. from the University of California, Los Angeles and completed postdoctoral training in primary care and prevention. In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. He develops or co-develops a number of R packages including Varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.
Read more about Joshua F. Wiley