Reader small image

You're reading from  Practical Internet of Things Security - Second Edition

Product typeBook
Published inNov 2018
Publisher
ISBN-139781788625821
Edition2nd Edition
Right arrow
Authors (2):
Brian Russell
Brian Russell
author image
Brian Russell

Brian Russell is the founder of TrustThink, LLC, where he leads multiple efforts towards the development of trusted IoT solutions. He has over 20 years of information security experience and has led complex system security engineering programs in the areas of cryptographic modernization, cryptographic key management, unmanned aerial systems, and connected vehicle security. He is the co-chair of the Cloud Security Alliance (CSA) IoT Working Group and was the recipient of the 2015 and 2016 CSA Ron Knode Service Award. Brian is an adjunct professor at the University of San Diego (USD) in the Cyber Security Operations and Leadership program.
Read more about Brian Russell

Drew Van Duren
Drew Van Duren
author image
Drew Van Duren

Drew Van Duren has provided 20 years of support to commercial and government customers in their efforts to secure safety-of-life and national security systems. He has provided extensive applied cryptographic design, key management expertise, and system security architecture design through rigorous integration of system security design with the core engineering disciplines. Drew has managed as Technical Director the two largest FIPS 140-2 test laboratories, security-consulted for the New York City Connected Vehicle Pilot Deployment, and participated in multiple standards groups such as the RTCA, SAE, and IEEE 1609 working group. Today, he supports the IEEE P1920 committee heading security architecture for unmanned aircraft aerial networks.
Read more about Drew Van Duren

View More author details
Right arrow

Defining the IoT


We arrive then at the problem of how to define the IoT and how to distinguish the IoT from today's internet of, well, computers. The IoT is certainly not a new term for mobile-to-mobile technology. It is far more. While many definitions of the IoT exist, we will primarily lean on the following three throughout this book.

The ITU's member-approved definition defines the IoT as follows:

"A global infrastructure for the information society, enabling advanced services by interconnecting (physical and virtual) things based on existing and evolving, interoperable information and communication technologies."

The IEEE's small environment description of the IoT is as follows:

"An IoT is a network that connects uniquely identifiable 'things' to the internet. The 'things' have sensing/actuation and potential programmability capabilities. Through the exploitation of the unique identification and sensing, information about the 'thing' can be collected and the state of the 'thing' can be changed from anywhere, anytime, by anything."

The IEEE's large environment scenario describes the IoT as follows:

"The Internet of Things envisions a self-configuring, adaptive, complex network that interconnects things to the internet through the use of standard communication protocols. The interconnected things have physical or virtual representation in the digital world, sensing/actuation capability, a programmability feature, and are uniquely identifiable. The representation contains information including the thing's identity, status, location, or any other business, social or privately relevant information. The things offer services, with or without human intervention, through the exploitation of unique identification, data capture and communication, and actuation capability. The service is exploited through the use of intelligent interfaces and is made available anywhere, anytime, and for anything taking security into consideration."

Each of these definitions is complementary. They overlap and describe just about anything that can be dreamed up and can be physically or logically connected to anything else over the internet or wireless networks. Regardless of definition nuances, the services that the IoT provides to a business, government, or private citizen are the truly valuable aspects of the IoT that we must assure. As security practitioners, we must be able to understand the value of these services and ensure that they are kept available and secure.

Defining cyber-physical systems

Cyber-Physical Systems (CPSes) are a huge, overlapping subset of the IoT. They fuse a broad range of engineering disciplines, each with a historically well-defined scope that includes the essential theory, lore, application, and relevant subject matter needed by their respective practitioners. These topics include engineering dynamics, fluid dynamics, thermodynamics, control theory, digital design, and many others. So, what is the difference between IoT and CPS? Borrowing from the IEEE, the principal difference is that a CPS—comprising connected sensors, actuators, monitoring and control systems—does not necessarily have to be connected to the internet. A CPS can be isolated from the internet and still achieve its business objective. From a communications perspective, the IoT is comprised of things that, necessarily and by definition, are connected to the internet and, through some aggregation of applications, achieve some business objective:

Note

The CPS, even if technically air-gapped from the internet, will almost always be connected in some way to the internet, whether through its supply chain, operating personnel, or out-of-band software patch management system. On-going research in the field of cybersecurity continues to demonstrate effective methods of jumping air-gaps to compromise isolated systems. 

It is worthwhile to think of the IoT as a super-set of CPSes, as CPSes can be enveloped into the IoT simply by connectivity to the internet. A CPS is generally a rigorously engineered system designed for safety, security, availability, and functionality. Emergent enterprise IoT deployments should take note of the lessons learned through the engineering rigor associated with CPSes. For more information on building resilient CPSes, consult the National Institute of Standards and Technology (NIST) Framework for Cyber Physical Systems (https://s3.amazonaws.com/nist-sgcps/cpspwg/files/pwgglobal/CPS_PWG_Framework_for_Cyber_Physical_Systems_Release_1_0Final.pdf) and its related efforts to the IoT-Enabled Smart Cities Framework and others (https://www.nist.gov/el/cyber-physical-systems).

Previous PageNext Page
You have been reading a chapter from
Practical Internet of Things Security - Second Edition
Published in: Nov 2018Publisher: ISBN-13: 9781788625821
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime

Authors (2)

author image
Brian Russell

Brian Russell is the founder of TrustThink, LLC, where he leads multiple efforts towards the development of trusted IoT solutions. He has over 20 years of information security experience and has led complex system security engineering programs in the areas of cryptographic modernization, cryptographic key management, unmanned aerial systems, and connected vehicle security. He is the co-chair of the Cloud Security Alliance (CSA) IoT Working Group and was the recipient of the 2015 and 2016 CSA Ron Knode Service Award. Brian is an adjunct professor at the University of San Diego (USD) in the Cyber Security Operations and Leadership program.
Read more about Brian Russell

author image
Drew Van Duren

Drew Van Duren has provided 20 years of support to commercial and government customers in their efforts to secure safety-of-life and national security systems. He has provided extensive applied cryptographic design, key management expertise, and system security architecture design through rigorous integration of system security design with the core engineering disciplines. Drew has managed as Technical Director the two largest FIPS 140-2 test laboratories, security-consulted for the New York City Connected Vehicle Pilot Deployment, and participated in multiple standards groups such as the RTCA, SAE, and IEEE 1609 working group. Today, he supports the IEEE P1920 committee heading security architecture for unmanned aircraft aerial networks.
Read more about Drew Van Duren