Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Oracle Cloud Infrastructure for Solutions Architects
Oracle Cloud Infrastructure for Solutions Architects

Oracle Cloud Infrastructure for Solutions Architects: A practical guide to effectively designing enterprise-grade solutions with OCI services

By Prasenjit Sarkar
$48.99
Book Oct 2021 336 pages 1st Edition
eBook
$39.99 $27.98
Print
$48.99
Subscription
$15.99 Monthly
eBook
$39.99 $27.98
Print
$48.99
Subscription
$15.99 Monthly

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Black & white paperback book shipped to your address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Buy Now

Product Details


Publication date : Oct 15, 2021
Length 336 pages
Edition : 1st Edition
Language : English
ISBN-13 : 9781800566460

Estimated delivery fee Deliver to United States

Premium 6 - 9 business days

$21.95
(Includes tracking information)

Economy 10 - 13 business days

$6.95
Table of content icon View table of contents Preview book icon Preview Book

Oracle Cloud Infrastructure for Solutions Architects

Chapter 1: Introduction to Oracle Cloud Infrastructure

Oracle Cloud Infrastructure (OCI) is an Infrastructure-as-a-Service (IaaS) cloud platform that allows consumers to create resources, such as compute instances, databases, networks, containers, functions, and storage, in order to run their applications and workloads. A number of different parties can interact with the OCI cloud. Some of these are actual users, while others are external systems that OCI services communicate with.

So, what do you need from the cloud? Well, an enterprise always looks for scalable, available, and on-demand solutions when they want to move their workload to the cloud. However, for critical enterprise applications, you need no-compromise security and performance guarantees. Remember, you want to offer the same, or better, Service-Level Agreements (SLAs) for your business.

In this chapter, we will cover the following topics:

  • Regions and Availability Domains (ADs)
  • Off-box virtualization
  • Fault domains

Regions and ADs

OCI has been built using the concept of regions. A region is simply a physical location in the world where OCI hosts data centers. In a nutshell, a region is a localized geographic area. Within a region, OCI hosts one or more physical data centers and calls this an Availability Domain (AD).

In this section, we will look at the main concepts of OCI in more detail, such as regions, ADs, and fault domains. Additionally, we will learn how to subscribe to other regions.

A lot of OCI services are regional; for example, Virtual Cloud Networks (VCNs). If you create a VCN, it will span across the AD. Other services are AD-specific, such as compute resources. You can create a compute instance that has access to a specific AD. Additionally, there is a very strong interconnectivity between the ADs within a region and across regions. Within an AD, interconnected traffic is encrypted as well.

As of August 2020, there are 26 regions and 6 interconnected Azure regions that are live. The following map shows the different regions that are currently live across the globe:

Figure 1.1 – OCI regions

Figure 1.1 – OCI regions

Oracle's strategy is to add new regions around the world in order to give customers local access to its cloud resources. To speed up the process and still provide high availability, OCI has launched one AD region that has three fault domains inside the physical AD. We will discuss fault domains in more detail later in this chapter.

OCI regions are dispersed via vast distances across countries and even continents. When a customer deploys their application, they typically put that application in the region where it is most heavily used. However, there are multiple reasons why someone might choose to put their applications in different regions, such as the following:

  • A natural calamity could affect a whole country or continent.
  • Data jurisdiction drives data locality requirements.

The following table identifies a region, its identifiers, location, region key, realm key, and the number of ADs within it:

Important note

The data in the table is accurate as of August 2020. However, it may not remain accurate as Oracle is rapidly adding new regions and interconnected Azure regions. You can refer to Oracle's public documentation to find the latest information on the available regions at https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm?.

Managing regions from the OCI console

You can subscribe to any of the commercially available regions from the OCI console. However, doing so requires administrative privileges.

During the sign-up process, OCI will create a tenancy and assign a region to you. This is called the home region. You cannot change this home region later. However, you can subscribe to other available regions. By doing so, OCI will replicate your identity resources to the new region.

To view the subscribed regions, follow these steps:

  1. Log in to the OCI console.
  2. Open the Regions menu.
  3. View the subscribed region(s). Please note that all the region names that appear in the Regions menu are the regions that you are subscribed to already.

To subscribe to other regions, perform these steps:

  1. Log in to the OCI console.
  2. Open the Regions menu, and then click on Manage Regions, as highlighted in the following screenshot:
    Figure 1.2 – The list of subscribed regions

    Figure 1.2 – The list of subscribed regions

  3. Check which region you want to subscribe to, and then click on Subscribe, as shown in the following screenshot:
Figure 1.3 – The Infrastructure Regions subscription page

Figure 1.3 – The Infrastructure Regions subscription page

So, you can see how simple it is to subscribe to regions where you want to consume cloud resources.

Logical view of Oracle Cloud Infrastructure components

OCI regions are part of a realm. A realm is a logical collection of regions. Realms do not share any data. While regions within a realm can share data via replication, regions in separate realms are completely isolated from each other.

Tenancies

OCI users live in a tenancy, which is a logical grouping for a business customer that contains users, groups, and compartments. A tenancy is based in a home region but can be subscribed to other regions. When a tenancy is subscribed to another region, tenancy data created in the home region is automatically replicated to the subscribed region. Replication of this data is required to call services in that region. Identity data can only be modified in the tenant's home region.

Bootstrapping

A tenancy is created when the accounts service receives a request to create an account entitlement. The account service coordinates with the Identity and Access Management (IAM) service to generate several resources, such as the tenancy (root compartment), a default access policy, a user account, and an administrators group to which the user is added.

When the user account is created, a one-time password (OTP) is generated. With this password, the user can sign in to the web console and upload the public part of the key pair they generated. Once this is done, the user can start making signed calls to the OCI APIs using command-line interface (CLI) tools.

Compartments

Compartments are the logical containers of resources. Compartments typically have a policy attached to them to control access to the resources inside. Compartments can be nested as well. They can span regions, which makes it possible to add, for example, compute instances from different regions to the same compartment and have them guarded by the same policy.

Oracle Cloud Identifiers (OCIDs)

Resources in OCI are identified by unique Oracle Cloud Identifiers (OCIDs). An OCID consists of different parts separated by dots:

ocid1.<resource type>.<realm>.[region][.future use].<unique ID>

Let's take a look at the various parts that make up the OCID:

  • ocid1: This indicates the version of the OCID.
  • resource type: This is the type of resource. For example, a resource can be an instance, a volume, a VCN, a tenancy, a user, or a group.
  • realm: This indicates which realm the resource is in. For example, all production regions use oc1.
  • region: This indicates where this resource is located.
  • future use: This is reserved for future use; therefore, you are likely to see a blank space here.
  • unique ID: This section is the unique portion of the ID. You might notice a different format depending on the type of resource or service.

Here are a couple of examples:

ocid1.tenancy.oc1..aaaaaaaaba3pv6wkcr4jqae5f44n2b2m2yt2j6rx32uzr4h25vqstifsfdsq
ocid1.instance.oc1.phx.abuw4ljrlsfiqw6vzzxb43vyypt4pkodawglp3wqxjqofakrwvou52gb6s5a

OCI's regions are physically divided into ADs, which are named by numbering them (for example, phx-ad-1, phx-ad-2, and phx-ad-3). It is a human tendency to pick the first AD from a given list when it comes to creating a compute instance in an AD. In order to stop you from doing this, OCI gives each tenancy a random set of logical ADs. This is called AD obfuscation. Logical AD names look like SQPR:PHX-AD-1, and physical AD names look like phx-ad-1.

AD, which is nothing but physical data centers, are far away enough that they are completely independent, from a failure perspective, but are close enough to have very low-latency connectivity. Customers get to choose what AD they create resources in, such as compute instances, databases, and more. This selection, however, is randomly mapped to a physical AD to prevent the uneven usage of ADs. In the following screenshot, you can see a logical view of the mapping of ADs in a region and how that maps to a fault domain inside it:

Figure 1.4 – An OCI AD

Figure 1.4 – An OCI AD

Inside an AD, OCI runs a highly scalable and high-performance network, which is not oversubscribed. Due to this design of non-oversubscription, there is no noisy neighbor problem. In terms of scalability, this AD can scale up to approximately 1 million ports. Additionally, because of the no noisy neighbors and non-oversubscription network, this AD has predictable low latency and high-speed interconnectivity between hosts that don't traverse more than two hops. In the following logical diagram, you can see a mapping of how the physical network infrastructure connects to the regions:

Figure 1.5 – The layout of OCI's physical infrastructure

Figure 1.5 – The layout of OCI's physical infrastructure

OCI's first four regions (Phoenix, Ashburn, London, and Frankfurt) consist of three ADs. Each AD is in a physically separate data center.

In these initial regions, Oracle built many foundational services that were specifically tied to a single AD. This is so that there would be no dependencies outside of a single AD. A compute service is the most prominent example of this.

After the first four regions, Oracle shifted their strategy. The majority of customer workloads do not take advantage of ADs for high availability, and, instead, they rely on high availability within an AD and use multiple regions to support disaster recovery. Therefore, OCI adapted to this by launching a larger number of single-AD regions.

Off-box virtualization

If you look at any traditional cloud provider, they are all made up of Virtual Machines (VMs) running on top of a hypervisor. A hypervisor's job is to isolate these VMs by sharing the same CPUs, and then capture I/O from each VM to ensure that they are abstracted from the hardware. The VM is, therefore, secure and portable, as it sees only a software-defined network interface card. The hypervisor can inspect all of the packets between the VMs and enable features such as IP whitelists and access control lists. This is depicted in the following diagram:

Figure 1.6 – In-kernel network virtualization

Figure 1.6 – In-kernel network virtualization

In in-kernel virtualization, whenever there is a need to inspect packets to and from a VM, you can put pressure on the host hypervisor by taking away its CPU cycles. This is mainly because this type of hypervisor performs packet switching, encapsulation, and enforces stateful firewall rules. However, this is not the only risk. There is another risk of having noisy neighbors. A noisy neighbor VM monopolizes bandwidth, disk I/O, and CPUs at the expense of its neighbors.

The fundamental purpose of off-box virtualization is that it no longer commits I/O virtualization into the hypervisor but to the network outside of the physical box. You can't reach the control plane that runs the virtual network from the public internet. However, you can create an explicit tunnel to reach the virtual network, which can be monitored, audited, and, in the case of an emergency, switched off as well. This is shown in the following diagram, where you can clearly see that the network I/O virtualization is not being done at the host hypervisor level:

Figure 1.7 – Off-box network virtualization

Figure 1.7 – Off-box network virtualization

When you move network virtualization from in-kernel virtualization to off-box virtualization, it results in a dramatic change in performance and improved security posture. This is because you are no longer getting any performance overhead associated with the hypervisor. Another benefit of off-box virtualization is that you retain the flexibility to plug anything into the virtual network. You can perhaps add another bare metal host, an Non-Volatile Memory Express (NVMe) storage system, a VM, a container, or even an engineered system, such as Exadata. All of them can run on this virtual network and reach each other within two hops. Take a look at the following diagram:

Figure 1.8 – OCI's holistic architecture

Figure 1.8 – OCI's holistic architecture

OCI's unique offering of bare metal servers doesn't come with a pre-installed operating system or any software. This increases the level of security over traditional virtualization. You can choose any hypervisor that you want to install on top of the OCI bare metal instance and then deploy VMs and install applications on top of that. OCI doesn't offer any access to the memory space of these bare metal instances, allowing complete physical isolation.

As you can see, these bare metal instances are running without any adjacent co-tenants; therefore, they boost both IOPS and bandwidth.

The security benefits of off-box virtualization

Traditional server virtualization comes with an abstraction layer. This layer abstracts the application that is running on the virtualized server from compute resources, storage, and networking hardware. You can deploy this virtual infrastructure without any disruption as it has nothing to do with user experience. You have to virtualize the CPU, main memory, network access, and I/O if you want to take advantage of partitioning, isolation, and hardware independence, which all result from the virtualization process.

Traditional server virtualization in first-generation public cloud infrastructures might come at a cost to the performance overhead and lead to weaker security. The performance overhead is mainly because the hypervisor needs to manage network traffic and I/O for all of the VMs that are running on a host, causing noisy neighbor problems. Additionally, the level of security is inherently weaker because, in traditional virtualization architectures, the hypervisor has complete trust and makes access decisions on behalf of the VM. This means a hostile actor that compromises the hypervisor can easily spread beyond the single hypervisor to other systems in the same cloud. More specifically, the traditional model implies that the attacker of a compromised host/hypervisor can access any VCN because the host/hypervisor is trusted to do so. You can see an example of in-kernel network virtualization in the following diagram:

Figure 1.9 – In-kernel virtualization

Figure 1.9 – In-kernel virtualization

The security isolation between one customer's compute resources from other customers' compute resources is critical. Fundamentally, OCI designed its security architecture with the assumption that customer-controlled compute resources can be hostile. It has a multi-pronged defense in-depth security architecture, which has been designed to minimize the security risks of traditional virtualization.

Oracle's Gen 2 Cloud infrastructure uses a unique approach that eliminates some of the disadvantages of traditional server virtualization. OCI uses off-box network virtualization, which takes network virtualization out of the software stack (hypervisor) and places it in the infrastructure. Oracle uses off-box network virtualization technology in both bare metal instances (for example, physical servers dedicated to a single customer) and VM instances.

Isolated network virtualization limits the attacker surface to only a VCN connected to the hypervisor by the control plane. OCI moves the trust from the hypervisor to the isolated network virtualization, which is implemented outside of the hypervisor. In the following diagram, you can see how this is done:

Figure 1.10 – Off-box network virtualization

Figure 1.10 – Off-box network virtualization

Bare metal is unique as no hypervisor is needed to run resource virtualization for the network and I/O. Instead, OCI moves network virtualization into the infrastructure, resulting in dramatic performance and security gains. This is because the performance overhead associated with traditional virtualization (in the hypervisor) is eliminated.

OCI effectively uses a coprocessor in the infrastructure, which performs network virtualization, and thus allows the hypervisor to focus on other virtualization tasks. Offloading network virtualization eliminates a number of traditional hypervisor security risks by creating a security boundary between the hypervisor running on one host and the virtual networks of other VMs running on other hosts.

OCI engineered this solution in an attempt to reduce the attack surface and potential damage that an attacker might cause in the case of a compromised hypervisor.

OCI has also implemented additional layers of network isolation, which prevent malicious actors from sending unauthorized network traffic even in the extremely unlikely case of an attacker breaking through the first line of defense that is provided by off-box network virtualization.

For bare metal instances, off-box network virtualization provides a security boundary for the virtual network. This boundary prevents an attacker on a bare metal instance from gaining access to the virtual networks of other bare metal instances and VMs running on other hypervisors.

Fault domains

OCI has achieved high availability by distributing resources to regions and ADs. A region is a geographically distributed area where one or more ADs are placed. During the initial process of OCI deployment, Oracle created multiple ADs inside a single region, such as Ashburn, Phoenix, Frankfurt, and the UK. These ADs are simply physically separated data centers in a single region.

To further segregate one single AD into more physically isolated areas, OCI created fault domains. A fault domain is a group of rack hardware that has been physically isolated within an AD. Each AD contains three fault domains. You can further choose which fault domain to put your cloud resources into, creating a high-availability structure even when you have just one AD within a region. Fault domains provide anti-affinity rules for your cloud resources. The physical hardware in a fault domain also has its own power supplies, which are redundant, to provide a further layer of availability. You can view a high-level logical diagram of the physically separated fault domain structure within a single AD here:

Figure 1.11 – OCI's fault domain

Figure 1.11 – OCI's fault domain

Fault domains are based on the compute racks within an AD. All of the resources that share a rack will also share a fault domain, and resources in different fault domains cannot exist on the same rack. Customers can choose which fault domain they want to create resources in. This selection, similarly to ADs, is randomly mapped to a physical fault domain per tenancy in order to prevent the uneven usage of fault domains.

In Chapter 4, Compute Choices on Oracle Cloud Infrastructure, we will show you how to choose a fault domain while creating an instance to distribute your workload across physical racks.

Summary

In this chapter, we have learned about the fundamentals of Oracle's second-generation cloud infrastructure and its building blocks, such as regions, ADs, fault domains, and off-box virtualization. These foundational pillars help Oracle to uniquely distinguish itself from other cloud providers in the market.

In the next chapter, we will go through the first and most important block of OCI's foundation, which is IAM. We will examine how OCI creates a logical separation of its resources using compartments, and we will learn how to assign roles and accesses using policy definitions.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore Oracle's Gen 2.0 Cloud infrastructure and its high-performance computing capabilities
  • Understand hybrid cloud capabilities and learn to migrate apps from on-premises VMware clusters to OCI
  • Learn to create Kubernetes clusters and run containerized applications on Oracle's Container Engine

Description

Oracle Cloud Infrastructure (OCI) is a set of complementary cloud services that enables you to build and run a wide range of applications and services in a highly available hosted environment. This book is a fast-paced practical guide that will help you develop the capabilities to leverage OCI services and effectively manage your cloud infrastructure. Oracle Cloud Infrastructure for Solutions Architects begins by helping you get to grips with the fundamentals of Oracle Cloud Infrastructure, and moves on to cover the building blocks of the layers of Infrastructure as a Service (IaaS), such as Identity and Access Management (IAM), compute, storage, network, and database. As you advance, you’ll delve into the development aspects of OCI, where you’ll learn to build cloud-native applications and perform operations on OCI resources as well as use the CLI, API, and SDK. Finally, you’ll explore the capabilities of building an Oracle hybrid cloud infrastructure. By the end of this book, you’ll have learned how to leverage the OCI and gained a solid understanding of the persona of an architect as well as a developer’s perspective.

What you will learn

Become well-versed with the building blocks of OCI Gen 2.0 Cloud Control access to your cloud resources using IAM components Manage and operate various compute instances Tune and configure various storage options for your apps Develop applications on OCI using OCI Registry (OCIR), Cloud Shell, OCI Container Engine for Kubernetes (OKE), and Service Mesh Discover ways to use object-relational mapping (ORM) to create infrastructure blocks using Terraform code

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Black & white paperback book shipped to your address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Buy Now

Product Details


Publication date : Oct 15, 2021
Length 336 pages
Edition : 1st Edition
Language : English
ISBN-13 : 9781800566460

Estimated delivery fee Deliver to United States

Premium 6 - 9 business days

$21.95
(Includes tracking information)

Economy 10 - 13 business days

$6.95

Table of Contents

15 Chapters
Preface Chevron down icon Chevron up icon
1. Section 1: Core Concepts of Oracle Cloud Infrastructure Chevron down icon Chevron up icon
2. Chapter 1: Introduction to Oracle Cloud Infrastructure Chevron down icon Chevron up icon
3. Chapter 2: Understanding Identity and Access Management Chevron down icon Chevron up icon
4. Chapter 3: Designing a Network on Oracle Cloud Infrastructure Chevron down icon Chevron up icon
5. Chapter 4: Compute Choices on Oracle Cloud Infrastructure Chevron down icon Chevron up icon
6. Chapter 5: Understanding Oracle Cloud Infrastructure Storage Options Chevron down icon Chevron up icon
7. Section 2: Understanding the Additional Layers of Oracle Cloud Infrastructure Chevron down icon Chevron up icon
8. Chapter 6: Understanding Database Choices on Oracle Cloud Infrastructure Chevron down icon Chevron up icon
9. Chapter 7: Building a Cloud-Native Application on Oracle Cloud Infrastructure Chevron down icon Chevron up icon
10. Chapter 8: Running a Serverless Application on Oracle Cloud Infrastructure Chevron down icon Chevron up icon
11. Chapter 9: Managing Infrastructure as Code on Oracle Cloud Infrastructure Chevron down icon Chevron up icon
12. Chapter 10: Interacting with Oracle Cloud Infrastructure Using the CLI/API/SDK Chevron down icon Chevron up icon
13. Chapter 11: Building a Hybrid Cloud on Oracle Cloud Infrastructure using Oracle Cloud VMware Solution Chevron down icon Chevron up icon
14. Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Filter icon Filter
Top Reviews
Rating distribution
Empty star icon Empty star icon Empty star icon Empty star icon Empty star icon 0
(0 Ratings)
5 star 0%
4 star 0%
3 star 0%
2 star 0%
1 star 0%

Filter reviews by


No reviews found
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela