Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Numerical Computing with Python

You're reading from   Numerical Computing with Python Harness the power of Python to analyze and find hidden patterns in the data

Arrow left icon
Product type Course
Published in Dec 2018
Last Updated in Feb 2025
Publisher Packt
ISBN-13 9781789953633
Length 682 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (5):
Arrow left icon
Pratap Dangeti Pratap Dangeti
Author Profile Icon Pratap Dangeti
Pratap Dangeti
Allen Yu Allen Yu
Author Profile Icon Allen Yu
Allen Yu
Claire Chung Claire Chung
Author Profile Icon Claire Chung
Claire Chung
Aldrin Yim Aldrin Yim
Author Profile Icon Aldrin Yim
Aldrin Yim
Theodore Petrou Theodore Petrou
Author Profile Icon Theodore Petrou
Theodore Petrou
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Title Page
Contributors
About Packt
Preface
1. Journey from Statistics to Machine Learning FREE CHAPTER 2. Tree-Based Machine Learning Models 3. K-Nearest Neighbors and Naive Bayes 4. Unsupervised Learning 5. Reinforcement Learning 6. Hello Plotting World! 7. Visualizing Online Data 8. Visualizing Multivariate Data 9. Adding Interactivity and Animating Plots 10. Selecting Subsets of Data 11. Boolean Indexing 12. Index Alignment 13. Grouping for Aggregation, Filtration, and Transformation 14. Restructuring Data into a Tidy Form 15. Combining Pandas Objects 1. Other Books You May Enjoy Index

Ensemble of ensembles with bootstrap samples using a single type of classifier


In this methodology, bootstrap samples are drawn from training data and, each time, separate models will be fitted (individual models could be decision trees, random forest, and so on) on the drawn sample, and all these results are combined at the end to create an ensemble. This method suits dealing with highly flexible models where variance reduction will still improve performance:

In the following example, AdaBoost is used as a base classifier and the results of individual AdaBoost models are combined using the bagging classifier to generate final outcomes. Nonetheless, each AdaBoost is made up of decision trees with a depth of 1 (decision stumps). Here, we would like to show that classifier inside classifier inside classifier is possible (sounds like the Inception movie though!):

# Ensemble of Ensembles - by applying bagging on simple classifier 
>>> from sklearn.tree import DecisionTreeClassifier 
...
lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Numerical Computing with Python
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon