Reader small image

You're reading from  Learning Linux Binary Analysis

Product typeBook
Published inFeb 2016
Reading LevelIntermediate
PublisherPackt
ISBN-139781782167105
Edition1st Edition
Languages
Tools
Right arrow
Author (1)
Ryan "elfmaster" O'Neill
Ryan "elfmaster" O'Neill
author image
Ryan "elfmaster" O'Neill

Ryan "elfmaster" O'Neill is a computer security researcher and software engineer with a background in reverse engineering, software exploitation, security defense, and forensics technologies. He grew up in the computer hacker subculture, the world of EFnet, BBS systems, and remote buffer overflows on systems with an executable stack. He was introduced to system security, exploitation, and virus writing at a young age. His great passion for computer hacking has evolved into a love for software development and professional security research. Ryan has spoken at various computer security conferences, including DEFCON and RuxCon, and also conducts a 2-day ELF binary hacking workshop. He has an extremely fulfilling career and has worked at great companies such as Pikewerks, Leviathan Security Group, and more recently Backtrace as a software engineer. Ryan has not published any other books, but he is well known for some of his papers published in online journals such as Phrack and VXHeaven. Many of his other publications can be found on his website at http://www.bitlackeys.org.
Read more about Ryan "elfmaster" O'Neill

Right arrow

ELF symbols


Symbols are a symbolic reference to some type of data or code such as a global variable or function. For instance, the printf() function is going to have a symbol entry that points to it in the dynamic symbol table .dynsym. In most shared libraries and dynamically linked executables, there exist two symbol tables. In the readelf -S output shown previously, you can see two sections: .dynsym and .symtab.

The .dynsym contains global symbols that reference symbols from an external source, such as libc functions like printf, whereas the symbols contained in .symtab will contain all of the symbols in .dynsym, as well as the local symbols for the executable, such as global variables, or local functions that you have defined in your code. So .symtab contains all of the symbols, whereas .dynsym contains just the dynamic/global symbols.

So the question is: Why have two symbol tables if .symtab already contains everything that's in .dynsym? If you check out the readelf -S output of an executable...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Learning Linux Binary Analysis
Published in: Feb 2016Publisher: PacktISBN-13: 9781782167105

Author (1)

author image
Ryan "elfmaster" O'Neill

Ryan "elfmaster" O'Neill is a computer security researcher and software engineer with a background in reverse engineering, software exploitation, security defense, and forensics technologies. He grew up in the computer hacker subculture, the world of EFnet, BBS systems, and remote buffer overflows on systems with an executable stack. He was introduced to system security, exploitation, and virus writing at a young age. His great passion for computer hacking has evolved into a love for software development and professional security research. Ryan has spoken at various computer security conferences, including DEFCON and RuxCon, and also conducts a 2-day ELF binary hacking workshop. He has an extremely fulfilling career and has worked at great companies such as Pikewerks, Leviathan Security Group, and more recently Backtrace as a software engineer. Ryan has not published any other books, but he is well known for some of his papers published in online journals such as Phrack and VXHeaven. Many of his other publications can be found on his website at http://www.bitlackeys.org.
Read more about Ryan "elfmaster" O'Neill