Reader small image

You're reading from  Causal Inference and Discovery in Python

Product typeBook
Published inMay 2023
PublisherPackt
ISBN-139781804612989
Edition1st Edition
Concepts
Right arrow
Author (1)
Aleksander Molak
Aleksander Molak
author image
Aleksander Molak

Aleksander Molak is a Machine Learning Researcher and Consultant who gained experience working with Fortune 100, Fortune 500, and Inc. 5000 companies across Europe, the USA, and Israel, designing and building large-scale machine learning systems. On a mission to democratize causality for businesses and machine learning practitioners, Aleksander is a prolific writer, creator, and international speaker. As a co-founder of Lespire, an innovative provider of AI and machine learning training for corporate teams, Aleksander is committed to empowering businesses to harness the full potential of cutting-edge technologies that allow them to stay ahead of the curve.
Read more about Aleksander Molak

Right arrow

What is a graphical model?

In this section, we’re going to discuss what graphical causal models (GCMs) are and how they can help in causal inference and discovery.

GCMs can be seen as a useful framework that integrates probabilistic, structural, and graphical aspects of causal inference.

Formally speaking, we can define a graphical causal model as a set consisting of a graph and a set of functions that induce a joint distribution over the variables in the model (Peters et al., 2017).

The basic building blocks of GCM graphs are the same as the basic elements of any directed graph: nodes and directed edges. In a GCM, each node is associated with a variable.

Importantly, in GCMs, edges have a strictly causal interpretation, so that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi><mml:mo>→</mml:mo><mml:mi>B</mml:mi></mml:math> means that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi></mml:math> causes <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>B</mml:mi></mml:math> (this is one of the differentiating factors between causal models and Bayesian networks; Pearl & Mackenzie, 2019, pp. 111-113). GCMs are very powerful because certain combinations of nodes and edges can reveal important...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Causal Inference and Discovery in Python
Published in: May 2023Publisher: PacktISBN-13: 9781804612989

Author (1)

author image
Aleksander Molak

Aleksander Molak is a Machine Learning Researcher and Consultant who gained experience working with Fortune 100, Fortune 500, and Inc. 5000 companies across Europe, the USA, and Israel, designing and building large-scale machine learning systems. On a mission to democratize causality for businesses and machine learning practitioners, Aleksander is a prolific writer, creator, and international speaker. As a co-founder of Lespire, an innovative provider of AI and machine learning training for corporate teams, Aleksander is committed to empowering businesses to harness the full potential of cutting-edge technologies that allow them to stay ahead of the curve.
Read more about Aleksander Molak