Reader small image

You're reading from  50 Algorithms Every Programmer Should Know - Second Edition

Product typeBook
Published inSep 2023
PublisherPackt
ISBN-139781803247762
Edition2nd Edition
Right arrow
Author (1)
Imran Ahmad
Imran Ahmad
author image
Imran Ahmad

Imran Ahmad has been a part of cutting-edge research about algorithms and machine learning for many years. He completed his PhD in 2010, in which he proposed a new linear programming-based algorithm that can be used to optimally assign resources in a large-scale cloud computing environment. In 2017, Imran developed a real-time analytics framework named StreamSensing. He has since authored multiple research papers that use StreamSensing to process multimedia data for various machine learning algorithms. Imran is currently working at Advanced Analytics Solution Center (A2SC) at the Canadian Federal Government as a data scientist. He is using machine learning algorithms for critical use cases. Imran is a visiting professor at Carleton University, Ottawa. He has also been teaching for Google and Learning Tree for the last few years.
Read more about Imran Ahmad

Right arrow

Limitation of k-means clustering

The k-means algorithm is designed to be a simple and fast algorithm. Because of the intentional simplicity in its design, it comes with the following limitations:

  • The biggest limitation of k-means clustering is that the initial number of clusters has to be predetermined.
  • The initial assignment of cluster centers is random. This means that each time the algorithm is run, it may give slightly different clusters.
  • Each data point is assigned to only one cluster.
  • k-means clustering is sensitive to outliers.
lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
50 Algorithms Every Programmer Should Know - Second Edition
Published in: Sep 2023Publisher: PacktISBN-13: 9781803247762

Author (1)

author image
Imran Ahmad

Imran Ahmad has been a part of cutting-edge research about algorithms and machine learning for many years. He completed his PhD in 2010, in which he proposed a new linear programming-based algorithm that can be used to optimally assign resources in a large-scale cloud computing environment. In 2017, Imran developed a real-time analytics framework named StreamSensing. He has since authored multiple research papers that use StreamSensing to process multimedia data for various machine learning algorithms. Imran is currently working at Advanced Analytics Solution Center (A2SC) at the Canadian Federal Government as a data scientist. He is using machine learning algorithms for critical use cases. Imran is a visiting professor at Carleton University, Ottawa. He has also been teaching for Google and Learning Tree for the last few years.
Read more about Imran Ahmad