Reader small image

You're reading from  50 Algorithms Every Programmer Should Know - Second Edition

Product typeBook
Published inSep 2023
PublisherPackt
ISBN-139781803247762
Edition2nd Edition
Right arrow
Author (1)
Imran Ahmad
Imran Ahmad
author image
Imran Ahmad

Imran Ahmad has been a part of cutting-edge research about algorithms and machine learning for many years. He completed his PhD in 2010, in which he proposed a new linear programming-based algorithm that can be used to optimally assign resources in a large-scale cloud computing environment. In 2017, Imran developed a real-time analytics framework named StreamSensing. He has since authored multiple research papers that use StreamSensing to process multimedia data for various machine learning algorithms. Imran is currently working at Advanced Analytics Solution Center (A2SC) at the Canadian Federal Government as a data scientist. He is using machine learning algorithms for critical use cases. Imran is a visiting professor at Carleton University, Ottawa. He has also been teaching for Google and Learning Tree for the last few years.
Read more about Imran Ahmad

Right arrow

Recommendation Engines

The best recommendation I can have is my own talents, and the fruits of my own labors, and what others will not do for me, I will try and do for myself.

—18–19th-century scientist John James Audubon

Recommendation engines harness the power of available data on user preferences and item details to offer tailored suggestions. At their core, these engines aim to identify commonalities among various items and understand the dynamics of user-item interactions. Rather than just focusing on products, recommendation systems cast a wider net, considering any type of item – be it a song, a news article, or a product – and tailoring their suggestions accordingly.

This chapter starts by presenting the basics of recommendation engines. Then, it discusses various types of recommendation engines. In the subsequent sections of this chapter, we’ll explore the inner workings of recommendation systems. These systems...

Introducing recommendation systems

Recommendation systems are powerful tools, initially crafted by researchers but now widely adopted in commercial settings, that predict items a user might find appealing. Their ability to deliver personalized item suggestions makes them an invaluable asset, especially in the digital shopping landscape.

When used in e-commerce applications, recommendation engines use sophisticated algorithms to improve the shopping experience for shoppers, allowing service providers to customize products according to the preferences of the users.

A classic example of the significance of these systems is the Netflix Prize challenge in 2009. Netflix, aiming to refine its recommendation algorithm, offered a whopping $1 million prize for any team that could enhance its current recommendation system, Cinematch, by 10%. This challenge saw participation from researchers globally, with BellKor’s Pragmatic Chaos team emerging as the winner. Their achievement...

Types of recommendation engines

We can broadly classify recommendation engines into three main categories:

  • Content-based recommendation engines: They focus on item attributes, matching the features of one product to another.
  • Collaborative filtering engines: They predict preferences based on user behaviors.
  • Hybrid recommendation engines: A blend of both worlds, these engines integrate the strengths of content-based and collaborative filtering methods to refine their suggestions.

Having established the categories, let’s start by diving into the details of these three types of recommendation engines one by one:

Content-based recommendation engines

Content-based recommendation engines operate on a straightforward principle: they recommend items that are like ones the user has previously engaged with. The crux of these systems lies in accurately measuring the likeness between items.

To illustrate, imagine the scenario depicted in Figure...

Understanding the limitations of recommendation systems

Recommendation engines use predictive algorithms to suggest recommendations to a bunch of users. It is a powerful technology, but we should be aware of its limitations. Let’s look into the various limitations of recommendation systems.

The cold start problem

At the core of collaborative filtering lies a crucial dependency: historical user data. Without a track record of user preferences, generating accurate suggestions becomes a challenge. For a new entrant into the system, the absence of data means our algorithms largely operate on assumptive grounds, which can lead to imprecise recommendations. Similarly, in content-based recommendation systems, fresh items might lack comprehensive details, making the suggestion process less reliable. This data dependency – the need for established user and item data to produce sound recommendations – is what’s termed the cold start problem.

There are...

Areas of practical applications

Recommendation systems play a pivotal role in our daily digital interactions. To truly understand their significance, let’s delve into their applications across various industries.

Based on the comprehensive details provided about Netflix’s use of data science and its recommendation system, let’s look at the restructured statement addressing the points mentioned.

Netflix’s mastery of data-driven recommendations

Netflix, a leader in streaming, has harnessed data analytics to fine-tune content recommendations, with 800 engineers in Silicon Valley advancing this effort. Their emphasis on data-driven strategies is evident in the Netflix Prize challenge. The winning team, BellKor’s Pragmatic Chaos, used 107 diverse algorithms, from matrix factorization to restricted Boltzman machines, investing 2,000 hours in its development.

The results were a significant 10.06% improvement in their “Cinematch”...

Practical example – creating a recommendation engine

Let’s build a recommendation engine that can recommend movies to a bunch of users. We will use data put together by the GroupLens Research group at the University of Minnesota.

1. Setting up the framework

Our first task is to ensure we have the right tools for the job. In the world of Python, this means importing necessary libraries:

import pandas as pd
import numpy as np

2. Data loading: ingesting reviews and titles

Now, let’s import the df_reviews and df_movie_titles datasets:

df_reviews = pd.read_csv('https://storage.googleapis.com/neurals/data/data/reviews.csv')
df_reviews.head()

The reviews.csv dataset encompasses a rich collection of user reviews. Each entry features a user’s ID, a movie ID they’ve reviewed, their rating, and a timestamp of when the review was made.

Figure 12.6: Contents of the reviews.csv dataset

The movies.csv dataset...

Summary

In this chapter, we learned about recommendation engines. We studied the selection of the right recommendation engine based on the problem that we are trying to solve. We also looked into how we can prepare data for recommendation engines to create a similarity matrix. We also learned how recommendation engines can be used to solve practical problems, such as suggesting movies to users based on their past patterns.

In the next chapter, we will focus on the algorithms that are used to understand and process data.

Learn more on Discord

To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

https://packt.link/WHLel

lock icon
The rest of the chapter is locked
You have been reading a chapter from
50 Algorithms Every Programmer Should Know - Second Edition
Published in: Sep 2023Publisher: PacktISBN-13: 9781803247762
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime

Author (1)

author image
Imran Ahmad

Imran Ahmad has been a part of cutting-edge research about algorithms and machine learning for many years. He completed his PhD in 2010, in which he proposed a new linear programming-based algorithm that can be used to optimally assign resources in a large-scale cloud computing environment. In 2017, Imran developed a real-time analytics framework named StreamSensing. He has since authored multiple research papers that use StreamSensing to process multimedia data for various machine learning algorithms. Imran is currently working at Advanced Analytics Solution Center (A2SC) at the Canadian Federal Government as a data scientist. He is using machine learning algorithms for critical use cases. Imran is a visiting professor at Carleton University, Ottawa. He has also been teaching for Google and Learning Tree for the last few years.
Read more about Imran Ahmad