Reader small image

You're reading from  Agile Model-Based Systems Engineering Cookbook Second Edition - Second Edition

Product typeBook
Published inDec 2022
PublisherPackt
ISBN-139781803235820
Edition2nd Edition
Right arrow
Author (1)
Dr. Bruce Powel Douglass
Dr. Bruce Powel Douglass
author image
Dr. Bruce Powel Douglass

Dr. Bruce Powel Douglass, Ph.D. has deep and broad expertise as a result of over 40 years' experience designing safety-critical real-time systems in a variety of hard real-time environments. He is one of the authors of both the UML and SysML standards, and author to over 6000 book pages from a number of technical books including The Harmony aMBSE Deskbook, Agile Systems Engineering, Real-Time UML, Real-Time UML Workshop for Embedded Systems, Real-Time Design Patterns, Doing Hard Time, Real-Time Agility, and Design Patterns for Embedded Systems in C. Many presentations, papers, models, designs, and more can be found on his website. He is currently the Senior Principal Agile Systems Engineer at the MITRE Corporation.
Read more about Dr. Bruce Powel Douglass

Right arrow

Model-Based Systems Engineering (MBSE)

Systems engineering is an independent engineering discipline that focuses on system properties – including functionality, structure, performance, safety, reliability, and security. MBSE is a model-centric approach to performing systems engineering. Systems engineering is largely independent of the engineering disciplines used to implement these properties. Systems engineering is an interdisciplinary activity that focuses more on this integrated set of system properties than on the contributions of the individual engineering disciplines. It is an approach to developing complex and technologically diverse systems. Although normally thought of in a V-style process approach (see Figure 1.1), the “left side of the V” emphases the specification of the system properties (requirements, architecture, interfaces, and overall dependability), the “lower part of the V” has to do with the discipline-specific engineering and design work, and the “right side of the V” has to do with the verification of the system against the specifications developed on the left side:

Figure 1.1: Standard V model life cycle

Of course, we’ll be doing things in a more agile way (Figure 1.2). Mostly, we’ll focus on incrementally creating the specification work products and handing them off to downstream engineering in an agile way:

Figure 1.2: Basic Agile systems engineering workflow

The basis of most of the work products developed in MBSE is, naturally enough, the model. For the most part, this refers to the set of engineering data relevant to the system captured in a SysML model. The main model is likely to be supplemented with models in other languages, such as performance, safety, and reliability (although you can use SysML for that too – we’ll discuss that in Chapter 2, System SpecificationFunctional, Safety and Security Analysis). The other primary work product will be textual requirements. While they are imprecise, vague, ambiguous, and hard to verify, they have the advantage of being easy to communicate. Our models will cluster these requirements into usage chunks – epics, use cases, and user stories – but we’ll still need requirements. These may be managed either as text or in text-based requirements management tools, such as IBM DOORS™, or they can be managed as model elements within a SysML specification model.

Our models will consist of formal representations of our engineering data as model elements and the relationships among them. These elements may appear in one or more views, including diagrams, tables, or matrices. The model is, then, a coherent collection of model elements that represent the important engineering data around our system of interest.

In this book, we assume you already know SysML. If you don’t, there are many books around for that. This book is a collection of short, high-focused workflows that create one or a small set of engineering work products that contain relevant model elements.

Now, let’s talk about some basic agile recipes and how they can be done in a model-centric environment.

Previous PageNext Page
You have been reading a chapter from
Agile Model-Based Systems Engineering Cookbook Second Edition - Second Edition
Published in: Dec 2022Publisher: PacktISBN-13: 9781803235820
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
undefined
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime

Author (1)

author image
Dr. Bruce Powel Douglass

Dr. Bruce Powel Douglass, Ph.D. has deep and broad expertise as a result of over 40 years' experience designing safety-critical real-time systems in a variety of hard real-time environments. He is one of the authors of both the UML and SysML standards, and author to over 6000 book pages from a number of technical books including The Harmony aMBSE Deskbook, Agile Systems Engineering, Real-Time UML, Real-Time UML Workshop for Embedded Systems, Real-Time Design Patterns, Doing Hard Time, Real-Time Agility, and Design Patterns for Embedded Systems in C. Many presentations, papers, models, designs, and more can be found on his website. He is currently the Senior Principal Agile Systems Engineer at the MITRE Corporation.
Read more about Dr. Bruce Powel Douglass