Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Mastering Embedded Linux Programming - Third Edition

You're reading from  Mastering Embedded Linux Programming - Third Edition

Product type Book
Published in May 2021
Publisher Packt
ISBN-13 9781789530384
Pages 758 pages
Edition 3rd Edition
Languages
Authors (2):
Frank Vasquez Frank Vasquez
Profile icon Frank Vasquez
Chris Simmonds Chris Simmonds
Profile icon Chris Simmonds
View More author details

Table of Contents (27) Chapters

Preface Section 1: Elements of Embedded Linux
Chapter 1: Starting Out Chapter 2: Learning about Toolchains Chapter 3: All about Bootloaders Chapter 4: Configuring and Building the Kernel Chapter 5: Building a Root Filesystem Chapter 6: Selecting a Build System Chapter 7: Developing with Yocto Chapter 8: Yocto Under the Hood Section 2: System Architecture and Design Decisions
Chapter 9: Creating a Storage Strategy Chapter 10: Updating Software in the Field Chapter 11: Interfacing with Device Drivers Chapter 12: Prototyping with Breakout Boards Chapter 13: Starting Up – The init Program Chapter 14: Starting with BusyBox runit Chapter 15: Managing Power Section 3: Writing Embedded Applications
Chapter 16: Packaging Python Chapter 17: Learning about Processes and Threads Chapter 18: Managing Memory Section 4: Debugging and Optimizing Performance
Chapter 19: Debugging with GDB Chapter 20: Profiling and Tracing Chapter 21: Real-Time Programming Other Books You May Enjoy

Preemptible kernel locks

Making the majority of kernel locks preemptible is the most intrusive change that PREEMPT_RT makes, and this code remains outside of the mainline kernel.

The problem occurs with spin locks, which are used for much of the kernel locking. A spin lock is a busy-wait mutex that does not require a context switch in the contended case, and so it is very efficient as long as the lock is held for a short time. Ideally, they should be locked for less than the time it would take to reschedule twice. The following diagram shows threads running on two different CPUs contending the same spin lock. CPU 0 gets it first, forcing CPU 1 to spin, waiting until it is unlocked:

Figure 21.3 – Spin lock

Figure 21.3 – Spin lock

The thread that holds the spin lock cannot be preempted since doing so may make the new thread enter the same code and deadlock when it tries to lock the same spin lock. Consequently, in mainline Linux, locking a spin lock disables kernel preemption...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}