Reader small image

You're reading from  Quantum Computing Algorithms

Product typeBook
Published inSep 2023
PublisherPackt
ISBN-139781804617373
Edition1st Edition
Right arrow
Author (1)
Barry Burd
Barry Burd
author image
Barry Burd

Barry Burd received a master's degree in computer science at Rutgers University and a Ph.D. in mathematics at the University of Illinois. As a teaching assistant in Champaign–Urbana, Illinois, he was elected five times to the university-wide List of Teachers Ranked as Excellent by Their Students. Since 1980, Dr. Burd has been a professor in the department of mathematics and computer science at Drew University in Madison, New Jersey. He has spoken at conferences in the United States, Europe, Australia, and Asia. In 2020, he was honored to be named a Java Champion. Dr. Burd lives in Madison, New Jersey, USA, where he spends most of his waking hours in front of a computer screen.
Read more about Barry Burd

Right arrow

Chapter 9, Shor’s Algorithm

      1. We start by finding values of 3n % 14:

      Next, we calculate the following:

      {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfenced><mrow><msup><mn>3</mn><mfrac bevelled=\"true\"><mn>6</mn><mn>2</mn></mfrac></msup><mo>&#xA0;</mo><mo>+</mo><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo></mrow></mfenced><mfenced><mrow><msup><mn>3</mn><mfrac bevelled=\"true\"><mn>6</mn><mn>2</mn></mfrac></msup><mo>&#xA0;</mo><mo>-</mo><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo></mrow></mfenced><mo>=</mo><mo>&#xA0;</mo><mn>28</mn><mo>&#xB7;</mo><mn>26</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced><mrow><mn>2</mn><mo>&#xB7;</mo><mn>2</mn><mo>&#xB7;</mo><mn>7</mn></mrow></mfenced><mo>&#xB7;</mo><mfenced><mrow><mn>2</mn><mo>&#xB7;</mo><mn>13</mn></mrow></mfenced><mspace linebreak=\"newline\"/></mstyle></math>","origin":"MathType for Microsoft Add-in"}

      When we calculate 14/13, we find that it isn’t an integer. But 14/2 = 7. So, 14 = 2·7.

      1. We start by finding values of 2n % 35:

      Next, we calculate the following:

      {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfenced><mrow><msup><mn>2</mn><mfrac bevelled=\"true\"><mn>12</mn><mn>2</mn></mfrac></msup><mo>&#xA0;</mo><mo>+</mo><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo></mrow></mfenced><mfenced><mrow><msup><mn>2</mn><mfrac bevelled=\"true\"><mn>12</mn><mn>2</mn></mfrac></msup><mo>&#xA0;</mo><mo>-</mo><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo></mrow></mfenced><mo>=</mo><mo>&#xA0;</mo><mn>65</mn><mo>&#xB7;</mo><mn>63</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced><mrow><mn>5</mn><mo>&#xB7;</mo><mn>13</mn></mrow></mfenced><mo>&#xB7;</mo><mfenced><mrow><mn>3</mn><mo>&#xB7;</mo><mn>3</mn><mo>&#xB7;</mo><mn>7</mn></mrow></mfenced><mspace linebreak=\"newline\"/></mstyle></math>","origin":"MathType for Microsoft Add-in"}

      When we calculate 35/13 and 35/3, we find that these aren’t integers. But 35/5 = 7. So, 35 = 5·7.

      1. Dividing 71 by 8 gives us 8 with a remainder of 7. So, {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><msup><mi>e</mi><mfenced><mrow><mn>71</mn><mo>&#xB7;</mo><mfrac><mi>&#x3C0;</mi><mn>4</mn></mfrac></mrow></mfenced></msup></mstyle></math>","origin":"MathType for Microsoft Add-in"} is the same as {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><msup><mi>e</mi><mfenced><mrow><mn>7</mn><mo>&#xB7;</mo><mfrac><mi>&#x3C0;</mi><mn>4</mn></mfrac></mrow></mfenced></msup></mstyle></math>","origin":"MathType for Microsoft Add-in"}. According to Figures 9.9 and 9.13, {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><msup><mi>e</mi><mfenced><mrow><mn>7</mn><mo>&#xB7;</mo><mfrac><mi>&#x3C0;</mi><mn>4</mn></mfrac></mrow></mfenced></msup></mstyle></math>","origin":"MathType for Microsoft Add-in"} is equal to {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mo>-</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mi>i</mi></mstyle></math>","origin":"MathType for Microsoft Add-in"}.
      2. The QFT and QFT† matrices are shown here:
      1. The 2 × 2 QFT matrix is the Hadamard matrix because the second roots of unity are 1 and -1.
      2. The missing values are shown here:
      1. In the coprime powers sequence for 22 (with coprime 3), the period is 5. But 5 isn’t divisible by 2. You can’t find 35/2 + 1 or 35/2 &...
lock icon
The rest of the page is locked
Previous PageNext Chapter
You have been reading a chapter from
Quantum Computing Algorithms
Published in: Sep 2023Publisher: PacktISBN-13: 9781804617373

Author (1)

author image
Barry Burd

Barry Burd received a master's degree in computer science at Rutgers University and a Ph.D. in mathematics at the University of Illinois. As a teaching assistant in Champaign–Urbana, Illinois, he was elected five times to the university-wide List of Teachers Ranked as Excellent by Their Students. Since 1980, Dr. Burd has been a professor in the department of mathematics and computer science at Drew University in Madison, New Jersey. He has spoken at conferences in the United States, Europe, Australia, and Asia. In 2020, he was honored to be named a Java Champion. Dr. Burd lives in Madison, New Jersey, USA, where he spends most of his waking hours in front of a computer screen.
Read more about Barry Burd