Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Financial Modeling Using Quantum Computing

You're reading from  Financial Modeling Using Quantum Computing

Product type Book
Published in May 2023
Publisher Packt
ISBN-13 9781804618424
Pages 292 pages
Edition 1st Edition
Languages
Authors (4):
Anshul Saxena Anshul Saxena
Profile icon Anshul Saxena
Javier Mancilla Javier Mancilla
Profile icon Javier Mancilla
Iraitz Montalban Iraitz Montalban
Profile icon Iraitz Montalban
Christophe Pere Christophe Pere
Profile icon Christophe Pere
View More author details

Table of Contents (16) Chapters

Preface 1. Part 1: Basic Applications of Quantum Computing in Finance
2. Chapter 1: Quantum Computing Paradigm 3. Chapter 2: Quantum Machine Learning Algorithms and Their Ecosystem 4. Chapter 3: Quantum Finance Landscape 5. Part 2: Advanced Applications of Quantum Computing in Finance
6. Chapter 4: Derivative Valuation 7. Chapter 5: Portfolio Management 8. Chapter 6: Credit Risk Analytics 9. Chapter 7: Implementation in Quantum Clouds 10. Part 3: Upcoming Quantum Scenario
11. Chapter 8: Simulators and HPC’s Role in the NISQ Era 12. Chapter 9: NISQ Quantum Hardware Roadmap 13. Chapter 10: Business Implementation 14. Index 15. Other Books You May Enjoy

Machine learning

Machine learning in derivative pricing employs complex algorithms to predict future derivative prices, drawing from a vast dataset of historical trading data. By modeling market dynamics and identifying patterns, it provides more accurate price forecasts than traditional models. This not only reduces financial risk but also optimizes trading strategies. Furthermore, it provides insights into market behavior, assisting in the development of more resilient financial systems.

Geometric Brownian motion

We must model the underlying equities before estimating the price of derivative instruments based on their value. The geometric Brownian motion (GBM), also called the Wiener process, is the method often uses to model the stochastic process of a Brownian motion, driving the future values of an asset. It helps create trajectories that the asset price of the underlying stock may take in the future.

A stochastic or random process, here defined as the time-dependent...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}