Search icon
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Financial Modeling Using Quantum Computing

You're reading from  Financial Modeling Using Quantum Computing

Product type Book
Published in May 2023
Publisher Packt
ISBN-13 9781804618424
Pages 292 pages
Edition 1st Edition
Languages
Authors (4):
Anshul Saxena Anshul Saxena
Profile icon Anshul Saxena
Javier Mancilla Javier Mancilla
Profile icon Javier Mancilla
Iraitz Montalban Iraitz Montalban
Profile icon Iraitz Montalban
Christophe Pere Christophe Pere
Profile icon Christophe Pere
View More author details

Table of Contents (16) Chapters

Preface 1. Part 1: Basic Applications of Quantum Computing in Finance
2. Chapter 1: Quantum Computing Paradigm 3. Chapter 2: Quantum Machine Learning Algorithms and Their Ecosystem 4. Chapter 3: Quantum Finance Landscape 5. Part 2: Advanced Applications of Quantum Computing in Finance
6. Chapter 4: Derivative Valuation 7. Chapter 5: Portfolio Management 8. Chapter 6: Credit Risk Analytics 9. Chapter 7: Implementation in Quantum Clouds 10. Part 3: Upcoming Quantum Scenario
11. Chapter 8: Simulators and HPC’s Role in the NISQ Era 12. Chapter 9: NISQ Quantum Hardware Roadmap 13. Chapter 10: Business Implementation 14. Index 15. Other Books You May Enjoy

Logical versus physical qubits

Classical computing resources deal with faulty physical means or errors generated by all kinds of sources. Error-correcting codes have been extensively studied (https://en.wikipedia.org/wiki/Error_correction_code) concerning those needs. Richard Hamming (1950) was the first to propose error-correcting codes in early 1950. Classical error correction codes use the concept of redundancy or information replication to spot inconsistencies in the outcome of a given channel or computation result. This way, the error can be detected and even corrected to recover the mitigated outcome.

Taking this to the quantum regime faces two main challenges. The no-cloning theorem (Lindblad 1999) states that there is no way we can copy a quantum state if this state is unknown. Knowing this state would mean measuring it, and this event will force the state to collapse and lose all its quantum information. These two challenges require inventive solutions to deal with errors...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}