Reader small image

You're reading from  Dancing with Qubits - Second Edition

Product typeBook
Published inMar 2024
PublisherPackt
ISBN-139781837636754
Edition2nd Edition
Right arrow
Author (1)
Robert S. Sutor
Robert S. Sutor
author image
Robert S. Sutor

Robert S. Sutor has been a technical leader and executive in the IT industry for over 40 years. More than two decades of that were spent in IBM Research in Yorktown Heights, New York USA. During his time there, he worked on and led efforts in symbolic mathematical computation, mathematical programming languages, optimization, AI, blockchain, and quantum computing. He is the author of Dancing with Qubits: How quantum computing works and how it can change the world and Dancing with Python: Learn Python software development from scratch and get started with quantum computing, also with Packt. He is the published co-author of several research papers and the book Axiom: The Scientific Computation System with the late Richard D. Jenks. Sutor was an IBM executive on the software side of the business in areas including Java web application servers, emerging industry standards, software on Linux, mobile, and open source. He was the Vice President of Corporate Development and, later, Chief Quantum Advocate, at Infleqtion, a quantum computing and quantum sensing company based in Boulder, Colorado USA. He is currently an Adjunct Professor in the Department of Computer Science and Engineering at the University at Buffalo, New York, USA. He is a theoretical mathematician by training, has a Ph.D. from Princeton University, and an undergraduate degree from Harvard College. He started coding when he was 15 and has used most of the programming languages that have come along.
Read more about Robert S. Sutor

Right arrow

9.6 Amplitude amplification and interference

Suppose we have three qubits, and one of their quantum state standard basis kets {|000⟩, …, |111⟩} corresponds to a solution to some problem. We want to devise an algorithm to pick the correct ket and find the answer. I’m purposely not telling you the problem or how the kets map to the data and solution. Just assume we want to identify one of them that the algorithm can determine as best. algorithm$amplitude amplification amplitude$amplification

The first question is how to see that this best ket stands out from the others. The general form for a 3-qubit quantum register state is

Displayed math

with

Displayed math

If we initialize each qubit to |0⟩ and then apply H⊗3, we get a balanced superposition: balanced superposition superposition$balanced

Displayed math

All the coefficients are equal, and the square of each absolute value is 1/8. If we measure the qubits now, we have an...

lock icon
The rest of the page is locked
Previous PageNext Page
You have been reading a chapter from
Dancing with Qubits - Second Edition
Published in: Mar 2024Publisher: PacktISBN-13: 9781837636754

Author (1)

author image
Robert S. Sutor

Robert S. Sutor has been a technical leader and executive in the IT industry for over 40 years. More than two decades of that were spent in IBM Research in Yorktown Heights, New York USA. During his time there, he worked on and led efforts in symbolic mathematical computation, mathematical programming languages, optimization, AI, blockchain, and quantum computing. He is the author of Dancing with Qubits: How quantum computing works and how it can change the world and Dancing with Python: Learn Python software development from scratch and get started with quantum computing, also with Packt. He is the published co-author of several research papers and the book Axiom: The Scientific Computation System with the late Richard D. Jenks. Sutor was an IBM executive on the software side of the business in areas including Java web application servers, emerging industry standards, software on Linux, mobile, and open source. He was the Vice President of Corporate Development and, later, Chief Quantum Advocate, at Infleqtion, a quantum computing and quantum sensing company based in Boulder, Colorado USA. He is currently an Adjunct Professor in the Department of Computer Science and Engineering at the University at Buffalo, New York, USA. He is a theoretical mathematician by training, has a Ph.D. from Princeton University, and an undergraduate degree from Harvard College. He started coding when he was 15 and has used most of the programming languages that have come along.
Read more about Robert S. Sutor